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Statistical Inferences on the Lognormal Hazard Function under
Type 1 Censored Datal)
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Abstract

The hazard function is a non-negative function that measures the propensity of
failure in the immediate furture, and is frequently used as a decision criterion,
especially in replacement decisions.

In this paper, we compute approximate confidence intervals for the lognormal
hazard function under Type I censored data, and show how to choose the sample size
needed to estimate a point on the hazard function with a specified degree of precision.
Also we provide a table that can be used to compute the sample size.

1. Introduction

The lognormal distribution function has been widely used as a lifetime distribution model
(Whittemore and Altschuler(1976) and Crow and Shimizu(1988)). If lifetime T has a lognormal
distribution with the probability density function(p.d.f.)

1 _ 1 _logt-lh 2
fr(e)= on Po; expl ) ( m ¥, >0, (1.1)
then Y=logT has a normal distribution with p.d.f.
1 1 -
Fr(y)= o %o exp[~ =5 —y?”—)z], -—o<y<®,

The corresponding lognormal hazard function h can be written as

h(t)=h(t ; 1, "):T?E(g_ot’ t>0,

where ¢ and ® are the p.df. and the cumulative distribution function(c.d.f) of the standard
normal distribution, respectively, and

logt—L
p .

The hazard function is a non-negative function that measures the propensity of failure in
the immediate furture as a function of time, and is frequently used as a decision criterion,
especially in replacement decisions.

Many authors have contributed to the statistical methodology of the lognormal distribution.
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Laurent(1963), Land(1972), and Shimizu and Iwase(1981) considered the statistical inferences
for the parameters of the lognormal distribution. Estimation for the quantile function of the
distribution was discussed by Evans and Shaban(1974) and Kramer and Paik(1979). Zacks and
Even(1966) and Nelson and Schmee(1979) studied the efficiencies for estimators of the
reliability function. Nadas(1969) and Jones(1971) introduced methods for computing confidence
intervals for the lognormal hazard function under complete samples.

In this paper, we compute approximate confidence intervals for the lognormal hazard
function under Type I censored data, and show how to choose the sample size needed to
estimate a point on the hazard function with a specified degree of precision. Also we provide
a table that can be used to compute the sample size.

2. Statistical Inferences on the Hazard Function

We use the maximum likelihood(ML) method to estimate n, o6, and the hazard function
h(tey for any specified time t.. Consider Type I sampling scheme involving observation on
the lifetime of n independent individuals with p.d.f. (1.1). Then the log likelihood function
is given by

L T (- (n-r) og(- X&),

log L{}, 0)=-rlogo- 20T 2 -

where y; is log lifetimes for i€D, y. is a log censoring time, D is the set of individuals for
which y; is an observed log lifetime, and r is the number of observed lifetimes.

The first derivatives of logL are

dlogl _ _1 . (n-r) ; _6(zJ)
au of BT Loy
dlogl __ r 1 (yip)3s {n-r) [Ze o(z.) ]
ao o o & VH o -z
where
YU
Zc= g .

Some iterative procedures can be used to solve ML equation for the MLE’s §i and &.
Wolynetz(1979) suggested more effective iterative procedure than Newton—-Raphson method.
By the invariant property of MLE, the MLE of A(#) is given by

R(H=h(t: [ 8, t>0.
To obtain an approximate confidence interval for h(t.) at any specified time t., we

consider the approximate large sample normal distribution for logl[A(z.)]. This procedure is
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generally preferred over the one based on the approximate large sample normal distribution of
h(te).
The logarithm of the hazard function of T at any specified time ., [, is
I =l{te; 1, 0)=loglh(te)]

logt.—U log te=

o )] log6 - log te.

= = log 2m) - =5-( - log [0(~

Therefore, the MLE of [ is
f=1(tes 1, 0.

Theorem 2.1. The asymptotic variance of [ is

AVar(D= —012—[ (-ze+ —m((—ze—))-)zAVar( 1))

v2(=zet ‘6%%‘>(-23+2e———¢q2(_2;3) +1) ACov(fi, )

+(-zi+ 2, @dz(ze) +1)2 AVar(d) 1.

where
logte— U

Proof. By Taylor series approximation,

l Y2AVar(0).

AVar(h =(—2L ) avar(+2( —51- X —5 ) Acon(B, )+

Since

I=l(tey 1, 0)= log[—q,%('f—e)m—t]

the first derivatives of [ are given by

Hence this completes the proof.

The AVar(i), AVar(3), and ACov(f, 8 depend only on zc(Cohen(1961)).
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If we standardize AVar()) with respect to sample size n, then
Vize ze)=n AVar(D).

Viz., z.) depends only on the standardized logtimes =z. and z., which are functions of the
times t., t. and the unknown parameters U and o.

Planning values of UL and 0 are obtained from experience. It is also possible to obtain z.
and z. directly from planning values for p.=Fr{t:) and pe=Fr(te), the proportions of units
that are anticipated to fail by times ¢c and te, where F7 is cdf of lifetime T.
Straightforward computation gives;

ze=0""(py), VY=c or e.

Alternatively, one can obtain z. and ze by having planning values for ¢ and pi=Fr(¢&)
for any ¢i.

Let

Zizq)'l(pi).

Then

t
Zw=2i+_1 log(—=), W=c or e.
g Ly

Table 1 provides values of V(z., z.), as a function of z. for several values of z.. These
values include most practical applications of interest. The table of V(z: z.) shows the
followings;

1. For any fixed =ze., V(zc z.) decreases as 2z increases because less censoring

provides greater precision.
2. For a fixed standardized log censoring time 2., V(z:, z.) decreases rapidly and then

increases slowly as Zz. increases.
Given 1i and §, one can estimate AVar { logl A(t.)]} for any specified time t. by using

AVar { log[ A(t)] } =V(Z:, Zzo/n.

Theorem 2.2. A 100(1-v)% approximate confidence interval for the hazard function at any
specified time t., h(t.), is
[A(t)/q, Blte)q)
where
g=explZ q-v» SD | log[ A(t)] 11,

Z -y is the 1-7/2 quantile of the standard normal distribution, and SD { log[ A(t.)1} is an

estimate of the standard deviation of log{ A(z.)1.
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Proof. Since

log [ Blte)]-log [A(t.)]
SD { 10g[lFl(te)] }

~N(0,1) as n— ©,
the result can be proved easily.

Now, we show how to choose n large enough to estimate h(z.) to within a specified factor
q (g>1) with a specified probability 1-7v (0<y<1); that is, choose n so that
PLAt)/g<h(t.) < hltql=1-7. 2.1

Thoremm 2.3. The approximate sample size required to meet the criterion of equation
(2.1) is

n=[Z(1'Y/Z)/10g(Q)]Z Vize, ze).

Proof. Since, in large samples,

log [ A(te)]-loglh(te)]
[ Vize Ze) ]1/2
n

~N(0,1),

log (@)=Z a-va [V(ze, ze)mlY2.
Therefore, this completes the proof.
The sample size depends on the model parameters through zc and ze.

3. Example

The data below have been discussed by Nelson and Schmee(1979) and Lawless(1982), and
show the number of thousand miles at which different locomotive controls failed in a life test
involving 96 controls. The test was terminated after 135.0 thousand miles. The failure times
for the 37 failed items are 22.5, 37.5, 46.0, 485, 51.5, 53.0, 54.5, 57.7, 66.5, 68.0, 69.5, 76.5, 77.0,
785, 80.0, 81.5, 82.0, 83.0, 840, 91.5, 935, 1025, 107.0, 1085, 1125, 1135, 116.0, 117.0, 1185,
119.0, 120.0, 1225, 1230, 1275, 131.0, 1325, and 1340. In addition, there are 59 censoring
times, all equal to 135.0. We shall assume that the failure times are lognormally distributed.

The MLE’s for 1 and 0 are 1=4.12 and 0=0.71. An estimate of the hazard function at
t.=80 thousand miles is needed, since a warranty on the locomotive controls covers the first
80000 miles.



Then

c=

logtc.—H1 _ _logl135-4.12
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o

logte_u _

0.71

log 80~

412

e

V(1.12, 0.37)=0.29

h(80)=

o)

0.71

$(0.37)

q=1.1137.
If this estimate is to be within a factor 1.05 of the true value with probability 0.95 ( g=1.05

and 1-7v=0.95), the desired sample size is
n=101.96/1og 1.05}1** (0.29) =468.

Also, an approximate 95% confidence interval for A(80) is (0.0165, 0.0205).

®(-0.37)*0.71 %80

=112

=0.37

=0.0184

Table 1. values of V(z:, ze)

7 “|-20 -1.5 -1.0 0.5 0 05 1.0 1.5 20 3.0 40 5.0
-4.0 | 5742 2015 904 519 376 332 312 295 257 186 109 58.8
3.5 | 3374 1184 531 306 223 199 175 151 139 115 72.8 38.7
-3.0 | 1834 643 288 166 122 111 107 96.5 81.7 65.2 41.3 27.5
-2.5 | 905 316 141 81.6 60.5 56.1 53.2 50.9 42.7 30.6 20.9 13.7
-2.0 | 401 139 61.5 351 26.2 24.8 23.2 21.2 19.7 16.1 14.3 11.4
-1.5 | 164 56.1 24.0 13.2 3.61 9.24 89.2 7.23 5.49 4.63 2.97 1.16
1.0 | 73.5 24.3 9.74 4.78 3.07 2.79 2.47 2.04 1.76 0.83 0.43 0.19
0.5 | 49.0 15.9 6.06 2,59 1.24 0.78 0.61 0.47 0.41 0.17 0.06 0.04
49.2 16.2 6.28 2.73 1.24 0.56 0.26 0.23 0.18 0.06 0.03 0.02

0.5 | 56.1 18.8 7.27 3.49 1.76 0.91 0.44 0.18 0.10 0.05 0.02 0.0l
1.0 | 63.2 21.4 8.81 4.27 2.34 1.37 0.82 0.46 0.21 0.09 0.01 0.01
1.5 | 69.1 23.6 9.81 4.92 2.82 1.79 1.20 0.80 0.51 0.11 0.02 0.0l
2.0 {73.6 25.2 10.6 5.42 3.21 2,13 1.53 1.12 0.82 0.34 0.06 0.02
3.0 [79.4 27.2 11.7 6.08 3.73 2.65 2.01 1.63 1.35 0.87 0.46 0.18
4.0 | 82.6 28.5 12.3 6.47 4.05 2.92 2.32 1.97 1.73 1.31 0.91 0.56
| 5.0 | 84.5 29.3 12.6 6.71 4.25 3.11 2.54 2.21 2.00 1.64 1.28 0.94
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