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Abstract
In many studies, a researcher attempts to describe a population where units are measured for multiple out-

comes, or responses. In this paper, we present an efficient procedure based on ranked set sampling to estimate
and perform hypothesis testing on a multivariate mean. The method is based on ranking on an auxiliary covariate,
which is assumed to be correlated with the multivariate response, in order to improve the efficiency of the estima-
tion. We showed that the proposed estimators developed under this sampling scheme are unbiased, have smaller
variance in the multivariate sense, and are asymptotically Gaussian. We also demonstrated that the efficiency of
multivariate regression estimator can be improved by using Ranked set sampling. A bootstrap routine is devel-
oped in the statistical software R to perform inference when the sample size is small. We use a simulation study
to investigate the performance of the method under known conditions and apply the method to the biomarker data
collected in China Health and Nutrition Survey (CHNS 2009) data.
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1. Introduction

As the complexity and cost of biological experiments has grown considerably in recent years, partly
due to technological advances (high throughput technologies and more), there is an increasing need to
design experiments that maximize the information content of the collected sample. For most standard
statistical analyses, where the aim is to estimate some population parameter, maximizing information
translates into minimizing the variance associated with a parameter’s estimate. In many situations,
researchers observe multiple outcomes for each unit in the sample and wish to make inferences on a
parameter of the underlying population’s joint distribution, routinely this is done via estimating the
population mean vector. It is often the case that some or all of the individual components of this
response vector are costly, risky (complications due to biopsy), or even destructive (requiring animal
sacrifice). In such cases it may be desirable, for monetary or ethical reasons, to extract information
from each unit that is sampled, without taking the exact measurement of the response of interest for
each unit.

The most common approach for data collection method for making inference about population
parameter is simple random sample (SRS) from a population. Even though each subject selected
by SRS has an equal chance of being selected from a population to ensure the representativeness of a
population, there is no guarantee that the selected sample will truly represent the population. However,
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the only guarantee one can have is that if the sampling process is being repeated over and over again,
then the average of the attribute of interest for multiple SRS would provide the good estimator of the
population value of the attribute. Ranked set sampling (RSS) (McIntyre, 1952) is a type of sampling
scheme which allows researchers to use information from each unit in the sample, without taking every
unit’s exact measurement. The overall goal of the RSS is to obtain the sample from a population that is
more likely to span the full range of the values in the population to have a more representative sample
than the SRS of similar sample size. Traditionally, RSS can be used provided there is a reliable ranking
mechanism available, which should be cheaper or safer than exact measurement, for the response of
interest. The ranked but unmeasured units provide increased information over SRS of the same size
improving parameter inference. The additional information provided by ranking is due to the fact that
aspects of population structure are encoded through the order statistics. Knowledge of observations’
order statistic and exact measurement improve inference since ranked units target different population
attributes, unlike the identically distributed unit from a SRS. This has been shown in many works to
translate into improvement in parameter inference compared to simple random samples of the same
size.

In many situations, the outcome of interest is correlated with some auxiliary variable which may
be easier to measure than the outcome of interest. For instance weight may be correlated with fast-
ing blood glucose and may be easily obtained whereas some lab measurement would be necessary
for blood glucose measurement. The application of RSS has appeared in series of papers. See for
example, Chen (1999), Demir and Çıngı (2000), Huang et al. (2016), Jabrah et al. (2017), Kaur et al.
(1996), Samawi and Al-Sagheer (2001).

An outline of the paper is as follows. In Section 2 we introduce the necessary notation and prove
that mean estimation is unbiased with a smaller variance for RSS as compared to SRS. In addition,
in Section 2, we also derived the limiting distribution of Hotelling’s statistics (QQQ) as well as the
multivariate regression estimator using RSS. In Section 3, we perform a simulation study to compare
the performance of RSS to SRS in terms of estimation as well as hypothesis testing. In Section 4, we
apply the method on a real data set in the context of public health. We give concluding remarks and
future directions for the method in Section 5.

2. Multivariate mean estimation using ranked set sampling

2.1. Ranked set sampling procedure

In this section, we will briefly describe how a ranked set sample may be collected in this section for
a univariate random variable. To select the RSS of size n based on the auxiliary variable (X), the
following steps should be performed.

1. Select the SRS of size r, from a population based on the auxiliary variable (X). r is referred as the
set size which is typically between 2 and 5 although any size is possible. However, sizes larger
than 5 may become impractical (Takahasi and Wakimoto, 1968).

2. Order the auxiliary variable and choose the minimum of (X(1)). Measure the multivariate outcome
of interest Y(1).

3. Select the SRS of size r and order it based on the auxiliary variable again. Choose the second
minimum (X(2)) and measure the multivariate outcome of interest Y[2].

4. Repeat this process until the X(r) and Y(r) of rth independent SRS are obtained.
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Table 1: Structure of ranked set sampling

Cycle 1
(
X(1)1,Y(1)1

) (
X(2)1,Y(2)1)

)
· · ·

(
X(r)1Y(r)1

)
Cycle 2

(
X(1)2,Y(1)2

) (
X(2)2,Y(2)2

)
· · ·

(
X(r)2,Y(r)2

)
...

...
...

. . .
...

Cycle m
(
X(1)m,Y(1)m

) (
X(2)m,Y(2)m

)
· · ·

(
X(r)m,Y(r)m

)

5. The entire process of obtaining (X(1), X(2), . . . , X(r)) and (Y(1),Y(2), . . . ,Y(r)) is called a cycle.

6. Repeat m independent cycles to obtain a RSS of size n = rm.

Table 1 represents the structure of RSS. For more details about RSS (Jozani and Johnson, 2011;
Kowalczyk, 2004; Patil et al., 1995; Takahasi and Futatsuya, 1998).

2.2. Multivariate naive estimator

Our population of interest is an univariate auxilliary variable X and a d dimensional multivariate
outcome Y, with a covariance structure on the joint distribution of (Y, X) given by Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.

Assuming that we have collected m RSS cycles of set size r, where the ranking has been done on X, we
denote the data (X(i)k,Y[i]k), i = 1, 2, . . . , r, K = 1, 2, . . . ,m. Note that the subscript on X indicates that
ranking has been done on X and the subscript on Y indicates that ranking on X may result in imperfect
ranking on elements of Y. The naive estimator is defined as µ̂yRSS = (1/rm)

∑m
k=1

∑r
i=1 Y[i]k. It is

straightforward to show this is an unbiased estimator of the mean of Y. Since
∑r

i=1 fX(i) (x) = r fX(i) (x)
(Dell and Clutter, 1972)

Eµ̂yRSS =
1

rm

m∑
k=1

r∑
i=1

∫ ∞

−∞

∫ ∞

−∞
y fY|X(i)=x(y|x) fX(i) (x)dydx

=

∫ ∞

−∞

∫ ∞

−∞
y fY|X(i)=x(y|x)

1
r

r∑
i=1

fX(i) (x)dydx

=

∫ ∞

−∞

∫ ∞

−∞
y fY|X(i)=x(y|x) fX(x)dydx = µy.

Similarly for the variance (Dell and Clutter, 1972), by defining µ[i] = EY[i] we have

Var(µ̂yRSS) =
1

(rm)2

m∑
k=1

r∑
i=1

∫ ∞

−∞

∫ ∞

−∞

(
y − µ[i]

) (
y − µ[i]

)⊤ fY|X=x(y|x) fX(i) (x)dydx

=
1

rm2

m∑
k=1

∫ ∞

−∞

∫ ∞

−∞
(y − µ) (y − µ)⊤ fY|X=x(y|x)

1
r

r∑
i=1

fX(i) (x)dydx

− 2
1

(rm)2

m∑
k=1

r∑
i=1

∫ ∞

−∞

∫ ∞

−∞
(y − µ) fY|X=x(y|x) fX(i) (x)dydx

(
µ[i] − µ

)⊤
+

1
(rm)2

m∑
k=1

r∑
i=1

(
µ[i] − µ

) ∫ ∞

−∞

∫ ∞

−∞
fY|X=x(y|x) fX(i) (x)dydx

(
µ[i] − µ

)⊤
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=
1

(rm)
(Σ11) − 2

1
r2m

r∑
i=1

(
µ[i] − µ

) (
µ[i] − µ

)⊤
+

1
r2m

r∑
i=1

(
µ[i] − µ

) (
µ[i] − µ

)⊤
=

1
rm

Σ11 −
1
r

r∑
i=1

(
µ[i] − µ

) (
µ[i] − µ

)⊤ . (2.1)

It is clear that
∑r

i=1(µ[i]−µ)(µ[i]−µ)⊤ is positive semi-definite since ∀u ∈ Rd we have u⊤(µ[i]−µ)(µ[i]−
µ)⊤u ≥ 0. Then ∀u ∈ Rd u⊤(Var(µ̂ySRS) − Var(µ̂yRSS))u ≥ 0, or equivalently Var(µ̂ySRS) ≽ Var(µ̂yRSS).
Under the additional assumption that r ≥ d and X is correlated with each component of Y we have
strict inequality.

2.3. Multivariate regression estimator

Regression estimators are used to increase precision in mean estimation by incorporating information
in an auxilliary variable. In this case, we assume a linear regression of Y on X

Y = µy + β(X − µx) + ϵ, (2.2)

where X and ϵ are independent and ϵ is a mean zero residual vector with covariance Σϵ . Then the
regression equation with corresponding data from RSS is

Y[i]k = µy + β(X(i)k − µx) + ϵ(i)k i = 1, 2, . . . , r, k = 1, 2, . . . ,m. (2.3)

It is worth noting that typically the mean of X, µx, is unknown. However, since the auxilliary variable
X may be much cheaper to measure one may use the r2m units collected from the first stage of
sampling to estimate this quantity as µ̄x = (1/r2m)

∑m
k
∑r

i
∑r

j Xi jk.
Then the regression estimator for the mean of the response is given by

Ȳreg = µ̂yRSS + β̂(µ̄x − µ̂x), (2.4)

where

µ̂x =
1

rm

m∑
k=1

r∑
i=1

X(i)k, β̂ =

∑m
k=1

∑r
i=1

(
X(i)k − µ̂x

) (
Y[i]k − µ̂yRSS

)
∑m

k=1
∑r

i=1
(
X(i)k − µ̂x

)2 .

It is straightforward to show that µ̄x and µ̂x are unbiased estimates of µx using similar arguments as in
the previous section. When (2.3) holds conditional expectation implies that Eβ̂ = β and EȲreg = µy,
so that the regression estimator based on RSS is unbiased. Also

Var
(
Ȳreg

)
=EXVarY

(
Ȳreg|X

)
+ VarXEY

(
Ȳreg|X

)
.

Since EY (Ȳreg|X) = µy + β(µ̄x − µ̂x) the second term above is (1/r2m)
∑r

i=1 σ
2
X(i)
ββ⊤. For the first term

Cov(µ̂yRSS,β(µ̄x − µ̂x)|X) = 0 so that

EXVarY

(
Ȳreg|X

)
= EXVarY

(
µ̂yRSS|X

)
+ EXVarY

(
β̂(µ̄x − µ̂x)|X

)
=

1
(r2m)2

m∑
k=1

r∑
i=1

Σϵ + EX

(
(µ̄x − µ̂x)2 VarY

(
β̂|X

))
=

1
n
Σϵ + ΣϵEX

(µ̄x − µ̂x)2∑m
k=1

∑r
i=1

(
X(i)k − µ̂x

)2 .
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2.4. Testing for H0 : µ = µ0

Theorem 1. Let {Y[i]k}, i = 1, 2, . . . r and k = 1, 2, . . .m be a RSS sample from normal with mean
vector µ and variance covariance matrix Σ11. Let

ȲYYrss =
1

rm

m∑
k=1

r∑
i=1

Y[i]k,

S rss =

[
1

rm − 1

] m∑
k=1

r∑
i=1

(
Y[i]k − ȲYYrss

) (
Y[i]k − ȲYYrss

)T

QQQ = mr
(
ȲYYrss − µ0

)ᵀ
S −1

rss

(
ȲYYrss − µ0

)
Then for large sample the limiting distribution of QQQ is the χ2-distribution with d degrees of freedom
under the Null Hypothesis of µ = µ0.

Proof:

ȲYY rss =
1

rm

m∑
k=1

r∑
i=1

Y[i]k,

ȲYY rss =
1
r

r∑
i=1

Ȳ[i].

From Multivariate Central limit theorem
√

m(Ȳ[i] − µ[i])
d−→ Nd(0,Σ11[i]/m) as m → ∞ where Σ11[i] is

variance covariance matrix of Y[i].
Since Ȳ[i] are independent

√
mr

(
Ȳrss − µ

) d−→ Nd

(
0,

∑r
i=1 Σ11[i]

mr

)
.

√
mr(ȲYY rss − µ)

d−→ Nd(0,Σ11R/mr), where Σ11R is variance covariance matrix of Yrss.
Therefore,

√
mr

(
Ȳrss − µ

)
Σ
− 1

2
11R

d−→ Nd(0,1)

and hence

mr
(

¯Yrss − µ0

)ᵀ
Σ−1

11R

(
¯Yrss − µ0

)
∼ χ2

(d).

Since S −1
rss/Σ

−1
11R

d−→ 1 (See Appendix for more detail)

Q = mr
(
Ȳrss − µ0

)ᵀ
Σ−1

11R
S −1

rss

Σ−1
11R

(
Ȳrss − µ0

)
∼ χ2

(d).

�
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2.5. Testing for H0 : µ(1) = µ(2)

Theorem 2. Let {Y(t)
[i]k}, i = 1, 2, . . . r, k = 1, 2, . . .m and t = 1, 2 are two RSS samples from

Nd(µ(1),Σ11) and Nd(µ(2),Σ11). Let

Ȳ(1)
rss =

1
r1m1

m1∑
k=1

r1∑
i=1

Y(1)
[i]k,

Ȳ(2)
rss =

1
r2m2

m2∑
k=1

r2∑
i=1

Y(2)
[i]k,

S rss =

[
1

r1m1 + r2m2 − 2

]  m1∑
k=1

r1∑
i=1

(
Y(1)

[i]k − Ȳ(1)
rss

) (
Y(1)

[i]k − Ȳ(1)
rss

)T
+

m2∑
k=1

r2∑
i=1

(
Y(2)

[i]k − Ȳ(2)
rss

) (
Y(2)

[i]k − Ȳ(2)
rss

)T
 .

Then, Q = {(r1m1 · r2m2)/(r1m1 + r2m2)}(Ȳ(1)
rss − Ȳ(2)

rss )ᵀS −1
rss(Ȳ

(1)
rss − Ȳ(2)

rss ), for large samples, has the
limiting distribution as χ2 with d degrees of freedom under H0 : µ(1) = µ(2).

Proof: The proof is similar to that as in Theorem 1. �

2.6. Small samples

For small to moderate samples, for SRS, under H0 the Q statistics is distributed as {(N − 1) d}/(N − p)
Fd,N−d (Seber, 2009). As explicit distribution of Q statistics is not known, for small or moderate size
of RSS samples, we recommend performing hypothesis testing by Bootstrap method. Resampling
method for RSS was proposed by (Chen et al., 2004; Modarres et al., 2006). They suggest a natural
method to obtain bootstrap samples from each row (within cycle) of a RSS.

3. Simulation

In this section, we conducted the simulation study to estimate the multivariate outcome mean and the
performance of the hypothesis testing by RSS scheme. We also studied the performance of testing
hypothesis of equality of multivariate outcome means for two groups. For estimation of α of testing
Ho : µ = µ0 vs. Ha : µ ̸= µ0 , we considered four multivariate outcomes Yi (i = 1, 2, 3, 4) with
µ = [0.3, 0.3, 0.3, 0.2], variances as σ2

1 = σ
2
2 = σ

2
3 = σ

2
4 = 4 and covariances as σ12 = 2.39, σ13 =

1.59, σ14 = 2.83, σ23 = 3.19, σ24 = 1.18, and σ34 = 2.24. The auxiliary covariate (X) was simulated
with mean 0 and variance σ2

x = 1. For this simulation study, we considered unstructured covari-
ance among multivariate outcome Yi as shown below. Moreover, we used autoregressive covariance
structure between auxiliary variable X and Yi with correlation parameter ρ.

Cov(X,Yi) =


1 2ρ 2ρ2 2ρ3 2ρ4

2ρ 4 2.39 1.59 2.83
2ρ2 2.39 4 3.19 1.18
2ρ3 1.59 3.19 4 2.24
2ρ4 2.83 1.18 2.24 4

.
The RSS for of X and Yi were simulated from multivariate normal with mean µ and above variance

covariance matrix by following the steps as described in Section 2.1. For comparisons of estimation
of α for SRS and RSS, different sample sizes (n = rm) were evaluated by varying the ρ, set size and
cycle size. This entire process was repeated 2,000 times. For details of the parameter values, referred
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Table 2: Estimation of the α of testing Ho : µ = 0 vs. Ha : µ ̸= 0

ρ Cycle Set = 3 Set = 4 Set = 5
SRS RSS BSa SRS RSS BSa SRS RSS BSa

−0.8

5 0.0460 0.1375 0.0215 0.0375 0.1065 0.0475 0.0455 0.0795 0.0605
10 0.0455 0.0755 0.0450 0.0460 0.0530 0.0495 0.0410 0.0535 0.0620
20 0.0520 0.0545 0.0535 0.0485 0.0445 0.0545 0.0560 0.0410 0.0605
30 0.0555 0.0455 0.0560 0.0495 0.0430 0.0600 0.0480 0.0360 0.0530

−0.6

5 0.0475 0.1580 0.0210 0.0480 0.1070 0.0470 0.0550 0.0710 0.0600
10 0.0460 0.0720 0.0455 0.0465 0.0590 0.0555 0.0490 0.0405 0.0500
20 0.0520 0.0475 0.0460 0.0450 0.0460 0.0520 0.0605 0.0395 0.0550
30 0.0450 0.0415 0.0500 0.0470 0.0385 0.0555 0.0505 0.0415 0.0595

−0.4

5 0.0460 0.1400 0.0225 0.0540 0.1055 0.0440 0.0515 0.0840 0.0585
10 0.0580 0.0690 0.0395 0.0515 0.0555 0.0515 0.0450 0.0530 0.0655
20 0.0495 0.0500 0.0525 0.0495 0.0415 0.0510 0.0520 0.0360 0.0560
30 0.0595 0.0460 0.0530 0.0520 0.0360 0.0530 0.0560 0.0290 0.0515

0.4

5 0.0515 0.1530 0.0290 0.0615 0.0975 0.0425 0.0570 0.0800 0.0640
10 0.0445 0.0730 0.0405 0.0560 0.0495 0.0485 0.0495 0.0445 0.0540
20 0.0520 0.0420 0.0430 0.0505 0.0430 0.0575 0.0495 0.0310 0.0505
30 0.0525 0.0495 0.0570 0.0405 0.0385 0.0580 0.0495 0.0310 0.0505

0.6

5 0.0520 0.1545 0.0255 0.0545 0.0900 0.0380 0.0465 0.0785 0.0610
10 0.0540 0.0840 0.0525 0.0595 0.0660 0.0620 0.0475 0.0535 0.0595
20 0.0440 0.0495 0.0490 0.0470 0.0430 0.0555 0.0525 0.0400 0.0555
30 0.0555 0.0455 0.0535 0.0475 0.0340 0.0510 0.0555 0.0295 0.0465

0.8

5 0.0575 0.1365 0.0195 0.0465 0.0970 0.0450 0.0470 0.0840 0.0580
10 0.0520 0.0750 0.0455 0.0520 0.0730 0.0680 0.0495 0.0470 0.0580
20 0.0495 0.0590 0.0620 0.0535 0.0360 0.0470 0.0580 0.0350 0.0505
30 0.0560 0.0450 0.0520 0.0495 0.0405 0.0580 0.0500 0.0400 0.0570

SRS = simple random sample; RSS = ranked set sampling; BSa = Bootstrap α.

to Table 2. Table 2 results demonstrate that we can achieve nominal value for α by using RSS with
moderate to large samples, however, for smaller sample bootstrap RSS sampling can achieve nominal
value for α.

For estimation of the power of testing Ho : µ = 0 vs. Ha : µ ̸= 0, similar simulation settings were
considered as described above except with µ = [0.6, 0.6, 0.6, 0.4]. In addition to that bootstrap power
was also calculated by taking 1,000 bootstrap samples for each simulated RSS. Furthermore, MSE of
SRS, MSE of RSS and the multivariate naive estimator efficiency were calculated. Table 3 reports the
simulation results for estimating the power of testing hypothesis under various simulation settings.
We can also report that the power of the test increases as the set size increases with RSS, however,
for testing hypothesis RSS gives more power than SRS. As expected, Table 3 also shows that RSS
provides more efficient estimates of the multivariate naive estimator in terms of smaller MSEs.

Furthermore, the performance of testing hypothesis of equality of multivariate outcome means for
two groups, we simulated two groups with multivariate outcome (Yi ) (i = 1, 2, 3, 4) with means for the
first group µ1 = [0.3, 0.3, 0.3, 0.2] and mean for the second group µ2 = [0.6, 0.6, 0.6, 0.4] with similar
covariance matrix of Y as described above (Cov(X,Yi)). Table 4 represents the results of estimation
of power of the testing hypothesis Ho : µ1 = µ2 vs. Ha : µ1 ̸= µ2 with various parameter values of ρ,
set size and cycle sizes. Overall, from Table 4, we can conclude that RSS is more powerful for testing
hypothesis of equality of multivariate outcome means for two groups compared to SRS.

We also conducted a simulation study to show that the multivariate regression estimator for RSS
is more efficient than SRS. We considered multivariate outcomes Y with mean µ = (0.3, 0.3, 0.3, 0.2)
and the variance-covariance matrix (Cov(X,Yi))) as described above in this section. We also simu-
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Table 3: Estimation of power of testing Ho : µ = 0 vs. Ha : µ ̸= 0

Set ρ Cycle SRS RSS Bootstrap SRS RSS
Power Power Power MSE MSE

3

0.4

5 0.0900 0.2255 0.0445 3.88E−05 2.07E−05
10 0.1645 0.2120 0.1425 2.53E−06 1.37E−06
20 0.3445 0.3490 0.3510 1.79E−07 8.11E−08
30 0.4880 0.5280 0.5630 3.07E−08 1.69E−08

0.6

5 0.0850 0.2260 0.0440 4.93E−05 2.58E−05
10 0.1400 0.1990 0.1345 2.97E−06 1.61E−06
20 0.2945 0.2980 0.3030 1.94E−07 9.52E−08
30 0.4300 0.4540 0.4860 4.31E−08 2.30E−08

0.8

5 0.0995 0.2560 0.0505 2.28E−05 1.18E−05
10 0.2055 0.2640 0.1735 1.48E−06 8.17E−07
20 0.4140 0.4415 0.4465 1.17E−07 4.64E−08
30 0.5950 0.6805 0.7080 1.96E−08 9.07E−09

4

0.4

5 0.1100 0.1895 0.0950 1.16E−05 5.45E−06
10 0.2000 0.2365 0.2255 7.51E−07 3.29E−07
20 0.4490 0.4580 0.5125 5.32E−08 2.22E−08
30 0.6165 0.6600 0.7265 1.00E−08 4.16E−09

0.6

5 0.1015 0.1770 0.0865 1.53E−05 6.32E−06
10 0.1875 0.2020 0.1850 1.08E−06 4.01E−07
20 0.3565 0.3560 0.4000 6.00E−08 2.54E−08
30 0.5515 0.6285 0.6960 1.10E−08 4.65E−09

0.8

5 0.1125 0.2255 0.1060 8.08E−06 3.59E−06
10 0.2500 0.2940 0.2820 5.32E−07 2.15E−07
20 0.4950 0.5620 0.6150 2.61E−08 1.27E−08
30 0.7435 0.8290 0.8630 6.97E−09 2.63E−09

5

0.4

5 0.1440 0.1920 0.1475 5.22E−06 1.86E−06
10 0.2575 0.2830 0.3080 3.01E−07 1.13E−07
20 0.5325 0.5810 0.6565 2.10E−08 7.11E−09
30 0.7355 0.7910 0.8455 4.41E−09 1.54E−09

0.6

5 0.1200 0.1690 0.1285 6.41E−06 2.36E−06
10 0.2110 0.2140 0.2430 3.87E−07 1.45E−07
20 0.4800 0.4930 0.5820 2.70E−08 9.50E−09
30 0.6445 0.6960 0.7795 5.27E−09 1.63E−09

0.8

5 0.1505 0.2160 0.1625 2.96E−06 1.20E−06
10 0.3080 0.3310 0.3625 2.05E−07 6.88E−08
20 0.6425 0.7230 0.7935 1.28E−08 4.78E−09
30 0.8360 0.9060 0.9490 2.44E−09 8.07E−10

3

−0.4

5 0.1360 0.3185 0.0790 2.34E−04 1.35E−04
10 0.2635 0.3865 0.2970 1.35E−05 8.05E−06
20 0.6155 0.6740 0.6760 9.20E−07 5.14E−07
30 0.8125 0.8450 0.8625 1.94E−07 1.01E−07

−0.6

5 0.1210 0.3260 0.0815 6.66E−04 3.72E−04
10 0.2670 0.3685 0.2845 4.59E−05 2.30E−05
20 0.5460 0.5945 0.5950 2.55E−06 1.39E−06
30 0.7690 0.7840 0.8100 5.50E−07 2.61E−07

−0.8

5 0.1235 0.3075 0.0815 1.20E−03 6.60E−04
10 0.2550 0.3735 0.2915 7.74E−05 4.49E−05
20 0.5505 0.5840 0.5835 4.62E−06 2.18E−06
30 0.7840 0.8160 0.8375 9.25E−07 4.42E−07

4 −0.4

5 0.1830 0.3020 0.1775 8.33E−05 3.32E−05
10 0.4050 0.4740 0.4600 5.39E−06 2.19E−06
20 0.7870 0.8130 0.8365 3.10E−07 1.33E−07
30 0.9150 0.9505 0.9610 5.80E−08 2.81E−08

Continued



On inference of multivariate means under ranked set sampling 9

Set ρ Cycle SRS RSS Bootstrap SRS RSS
Power Power Power MSE MSE

4

−0.6

5 0.1675 0.3075 0.1735 2.34E−04 8.93E−05
10 0.3410 0.4435 0.4255 1.41E−05 6.17E−06
20 0.7095 0.7420 0.7725 8.19E−07 3.46E−07
30 0.9015 0.9105 0.9335 1.66E−07 7.02E−05

−0.8

5 0.1565 0.3065 0.1860 3.50E−04 1.65E−04
10 0.3635 0.4240 0.4095 1.95E−05 1.05E−05
20 0.7605 0.7605 0.7935 1.41E−06 6.53E−07
30 0.8985 0.8970 0.9210 2.95E−07 1.25E−07

5

−0.4

5 0.2555 0.3640 0.3100 3.33E−05 1.20E−05
10 0.5135 0.5645 0.5920 2.18E−06 8.53E−07
20 0.8590 0.8865 0.9185 1.08E−07 4.18E−08
30 0.9775 0.9785 0.9865 2.34E−08 8.02E−09

−0.6

5 0.2120 0.3210 0.2605 9.69E−05 3.36E−05
10 0.4630 0.5105 0.5400 5.91E−06 2.21E−06
20 0.8155 0.8235 0.8565 3.88E−07 1.31E−07
30 0.9530 0.9500 0.9650 7.24E−08 2.69E−08

−0.8

5 0.2115 0.3435 0.2920 1.49E−04 5.84E−05
10 0.4595 0.5270 0.5595 9.85E−06 3.53E−06
20 0.8080 0.8135 0.8575 6.00E−07 2.14E−07
30 0.9485 0.9525 0.9680 1.23E−07 4.38E−08

SRS = simple random sample; RSS = ranked set sampling; MSE = mean square error.

Table 4: Estimation of power of testing Ho : µ1 = µ2 vs. Ha : µ1 ̸= µ2

ρ Cycle Set = 3 Set = 4 Set = 5
SRS RSS BSa SRS RSS BSa SRS RSS BSa

−0.4

10 0.3055 0.3740 0.4058 0.3190 0.3545 0.4227 0.3905 0.4015 0.4354
20 0.3975 0.3990 0.4021 0.4665 0.4852 0.4973 0.4675 0.4840 0.5175
30 0.4785 0.4885 0.4800 0.5000 0.5245 0.5127 0.5865 0.6035 0.6131
40 0.5710 0.5605 0.5824 0.6150 0.6505 0.6421 0.6480 0.6570 0.6491

−0.6

10 0.2710 0.3610 0.3812 0.3470 0.3630 0.408 0.3639 0.3900 0.4128
20 0.3950 0.4160 0.4210 0.4240 0.4125 0.4357 0.4515 0.4970 0.5087
30 0.4570 0.4470 0.4424 0.4825 0.4915 0.4879 0.5285 0.5675 0.5564
40 0.5555 0.5535 0.5542 0.5745 0.6210 0.6321 0.6180 0.6475 0.6427

−0.8

10 0.2820 0.3550 0.3829 0.3160 0.3565 0.4186 0.3670 0.3855 0.4210
20 0.3785 0.3990 0.4021 0.4135 0.4500 0.4610 0.4475 0.5035 0.5142
30 0.4675 0.4625 0.4610 0.4810 0.5270 0.5287 0.5165 0.5525 0.5641
40 0.5275 0.5280 0.5195 0.5635 0.6035 0.5987 0.6040 0.6335 0.6289

0.4

10 0.3485 0.4480 0.4845 0.4025 0.4445 0.4975 0.4715 0.4775 0.5012
20 0.5075 0.5580 0.5641 0.5700 0.6305 0.6441 0.6475 0.6625 0.6951
30 0.6520 0.6520 0.6641 0.7325 0.7825 0.7888 0.7430 0.8065 0.8125
40 0.6895 0.7265 0.7248 0.8105 0.8605 0.8589 0.8600 0.9210 0.9287

0.6

10 0.3305 0.4130 0.4965 0.4055 0.4270 0.5102 0.4380 0.4680 0.5354
20 0.4745 0.5020 0.5214 0.5360 0.6040 0.6214 0.5985 0.6610 0.6698
30 0.5970 0.6265 0.6369 0.6620 0.7135 0.7125 0.7420 0.8105 0.8214
40 0.6585 0.7145 0.7235 0.7495 0.8020 0.7985 0.8300 0.8920 0.8879

0.8

10 0.3700 0.4490 0.5035 0.4665 0.5155 0.5210 0.5140 0.5450 0.5621
20 0.5495 0.5865 0.6089 0.6490 0.7020 0.7124 0.7275 0.7975 0.8213
30 0.7040 0.7415 0.7358 0.7745 0.8555 0.8614 0.8395 0.9255 0.9159
40 0.8055 0.8530 0.8521 0.8755 0.9295 0.9124 0.9320 0.9725 0.9800

SRS = simple random sample; RSS = ranked set sampling; BSa = Bootstrap α.

lated correlated auxiliary covariate (X) with mean 0 and variance 1. Table 5 shows that for various
parameter settings, the RSS is more efficient than SRS in estimating multivariate regression estimator.
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Table 5: Estimation of multivariate regression estimator

ρ Cycle Set = 3 Set = 4 Set = 5
MSE SRS MSE RSS MSE SRS MSE RSS MSE SRS MSE RSS

0.4

5 0.0078 0.0010 0.0024 0.0002 0.0010 6.49E−05
10 0.0004 4.40E−05 0.0001 1.22E−05 4.51E−05 3.29E−06
20 2.35E−05 2.73E−06 5.23E−06 6.57E−07 2.46E−06 2.30E−07
30 4.02E−06 5.61E−07 1.23E−06 1.26E−07 5.43E−07 4.17E−08

0.6

5 0.0098 0.0011 0.0032 0.0003 0.0011 7.69E−05
10 0.0004 5.77E−05 0.0001 1.16E−05 6.31E−05 4.72E−06
20 2.61E−05 3.60E−06 7.21E−06 7.73E−07 3.39E−06 2.90E−07
30 4.92E−06 6.95E−07 1.52E−06 1.72E−07 5.99E−07 7.68E−08

0.8

5 0.0109 0.0006 0.0036 0.0001 0.0012 5.70E−05
10 0.0005 2.96E−05 0.0002 7.87E−06 7.10E−05 2.62E−06
20 2.98E−05 1.74E−06 1.08E−05 4.59E−07 3.68E−06 1.57E−07
30 5.27E−06 3.37E−07 1.64E−06 8.36E−08 6.44E−07 2.75E−08

−0.4

5 0.0133 0.0057 0.0039 0.0013 0.0014 0.0005
10 0.0006 0.0003 0.0002 5.74E−05 8.44E−05 2.53E−05
20 3.64E−05 1.52E−05 1.25E−05 4.58E−06 4.25E−06 1.58E−06
30 7.16E−06 3.44E−06 2.69E−06 9.54E−07 7.72E−07 3.07E−07

−0.6

5 0.0270 0.0145 0.0070 0.0035 0.0028 0.001197
10 0.0013 0.0007 0.0003 0.0002 0.0001 7.06E−05
20 6.85E−05 4.62E−05 1.82E−05 1.51E−05 8.30E−06 4.00E−06
30 1.15E−05 9.00E−06 4.13E−06 2.45E−06 1.63E−06 8.03E−07

−0.8

5 0.0485 0.0273 0.0114 0.0074 0.0038 0.0024
10 0.0017 0.0015 0.0005 0.0004 0.0002 0.0001
20 7.85E−05 7.46E−05 2.69E−05 2.11E−05 1.17E−05 8.28E−06
30 1.85E−05 1.73E−05 5.90E−06 4.77E−06 2.42E−06 1.32E−06

MSE = mean square error; SRS = simple random sample; RSS = ranked set sampling.

4. Application to China Health and Nutrition Survey data

In this section, we illustrate the efficient ranked set sampling method via ranking on baseline covariate
to estimate the multivariate outcome mean, investigate the performance of the hypothesis testing for
two groups and estimation of multivariate regression estimator by using the China Health and Nu-
trition Survey (CHNS) for year 2009. The CHNS is the only large-scale household based survey in
China (Yan et al., 2003). As a part of the survey, anthropometry were collected on 10,242 children
and adults aged ≥ 7 in year 2009 along with other demographic information. Only 9,986 individuals
agreed to provide the fasting blood samples which were evaluated for many biomarkers of diabetes
and cardio-metabolic risk factors. For illustration purposes, we focused on the variables such as age
of the individuals as our ranking auxiliary variable, and cardio-metabolic biomarkers, for example,
Apolipoprotein A, Total cholesterol and Hemoglobin A1c. We treated the survey data as a population
and selected the range of RSS (N = set ∗ cycle) as shown in Table 6 by ranking on the baseline co-
variate age. SRS of similar size N was also selected from CHNS data to evaluate the performance of
the hypothesis testing and the efficiency of the sampling procedure compared to RSS in estimating the
multivariate outcome mean. The correlations (ρ) between age and biomarkers Apolipoprotein A, Total
cholesterol and Hemoglobin A1c are 0.12, 0.32, and 0.22 respectively. The mean for Apolipoprotein
A, Total cholesterol and Hemoglobin A1c are 1.14 (g/L), 4.78 mmol/L and 5.67 mmol/L respectively,
and for comparison purposes, they can be treated as the true parameters. Table 7 represents the power
comparison of RSS with SRS for multivariate means of males and females. Table 7 represents that
we can achieve more power with RSS compared to SRS with similar sample sizes. Table 8 shows the
results for multivariate regression estimation for biomarker data. We also took 1,000 samples of SRS
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Table 6: Multivariate mean estimation and MSEs for China Health and Nutrition Survey data

Set Cycle SRS MSE RSS MSE Efficiency

3

5 3.07E−05 3.04E−05 1.01
10 3.88E−06 3.41E−06 1.14
20 4.66E−07 4.43E−07 1.05
30 1.38E−07 1.26E−07 1.09

4

5 1.31E−05 1.17E−05 1.12
10 1.65E−06 1.47E−06 1.12
20 2.01E−07 1.81E−07 1.11
30 5.80E−08 5.43E−08 1.07

5

5 6.67E−06 5.85E−06 1.14
10 8.00E−07 7.08E−07 1.13
20 1.01E−07 9.06E−08 1.11
30 2.94E−08 2.57E−08 1.14

SRS = simple random sample; RSS = ranked set sampling; MSE = mean square error.

Table 7: Estimation of power of testing for Biomarker data for gender

Cycle Set = 3 Set = 4 Set = 5
SRS RSS SRS RSS SRS RSS

10 0.2531 0.3414 0.2875 0.3397 0.3155 0.3625
20 0.3353 0.3663 0.3722 0.3968 0.4017 0.4265
30 0.3893 0.4066 0.4243 0.4526 0.4691 0.4890
40 0.4324 0.4425 0.4823 0.5017 0.5374 0.5415

SRS = simple random sample; RSS = ranked set sampling.

Table 8: Multivariate regression estimation for China Health and Nutrition Survey data

Cycle Set = 3 Set = 4 Set = 5
MSE SRS MSE RSS MSE SRS MSE RSS MSE SRS MSE RSS

5 4.87E−05 3.03E−05 2.08E−05 1.89E−05 1.00E−05 5.82E−06
10 5.40E−06 4.84E−06 2.26E−06 1.49E−06 1.12E−06 9.91E−07
20 7.11E−07 5.13E−07 2.56E−07 2.25E−07 1.64E−07 1.09E−07
30 2.07E−07 1.59E−07 7.41E−08 5.58E−08 3.92E−08 3.31E−08

MSE = mean square error; SRS = simple random sample; RSS = ranked set sampling.

and RSS of sample size 80 (set = 4 and cycle = 20) and plotted the confidence regions as shown in
Figure 1. From Figure 1, we can see that the confidence region for SRS (blue nets) lies completely
outside of the confidence region of RSS (red).

5. Conclusion

In statistics, it is important to have a sampling method which is cost effective. RSS is one the important
method which can be used to have a more efficient multivariate mean estimator compared to most
commonly used method of SRS. The samples taken by using RSS method are more representative
samples due to its inherent structure imposed by ranking based on easy-to-available covariates. In this
paper, we demonstrated that the RSS is more efficient in estimating the multivariate mean as well as
in hypothesis testing for one and two independent samples. Simulation studies for the performance of
hypothesis testing showed that the RSS is more powerful compared to SRS. In general, in estimation
of the population mean, RSS improves the precision relative to SRS with the same sample size, n.
This is true even if the correlation between the auxiliary variable X and multivariate outcome Y is
moderate to high (±0.4 to ±0.8). However, when the correlation between X and Y is very low (such



12 Haresh Rochani, Daniel F. Linder, Hani Samawi, Viral Panchal

Figure 1: Confidence region for SRS (blue nets) and RSS (dolid ted) gor China Health and Nutrition Survey data.

as ± 0.001), RSS is equivalent to SRS and the ranking is not better than random. In practice, the key
issue is whether the increase in precision is sufficient to justify the increased costs associated with the
ranking process. In contrast, when the correlation between X and Y is very high (±0.9 or higher), the
precision in estimating the population mean will be very high as this will improve the ranking of X on
Y (Ridout, 2003).

Missing data is a very common problem in all most every research and can have a very signifi-
cant impact on the inferences drawn from the collected data such as biased estimation of population
parameters and loss of statistical power (Little and Rubin, 2014). The valid statistical analysis which
has appropriate missing data mechanisms assumptions (missing completely at random, missing at
random, or missing not at random) should be performed in SRS and in RSS. There is an extensive
literature available on how to deal with missing data for RSS in auxiliary variable X and univari-
ate response Y (Bouza-Herrera, 2013). However, handling the missing data in multivariate Y with
monotone or arbitrary missing pattern is still the active area of research.
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