• Title/Summary/Keyword: statistical error in press

Search Result 65, Processing Time 0.021 seconds

Strength and strain modeling of CFRP -confined concrete cylinders using ANNs

  • Ozturk, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.225-239
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) has extensive use in strengthening reinforced concrete structures due to its high strength and elastic modulus, low weight, fast and easy application, and excellent durability performance. Many studies have been carried out to determine the performance of the CFRP confined concrete cylinder. Although studies about the prediction of confined compressive strength using ANN are in the literature, the insufficiency of the studies to predict the strain of confined concrete cylinder using ANN, which is the most appropriate analysis method for nonlinear and complex problems, draws attention. Therefore, to predict both strengths and also strain values, two different ANNs were created using an extensive experimental database. The strength and strain networks were evaluated with the statistical parameters of correlation coefficients (R2), root mean square error (RMSE), and mean absolute error (MAE). The estimated values were found to be close to the experimental results. Mathematical equations to predict the strength and strain values were derived using networks prepared for convenience in engineering applications. The sensitivity analysis of mathematical models was performed by considering the inputs with the highest importance factors. Considering the limit values obtained from the sensitivity analysis of the parameters, the performances of the proposed models were evaluated by using the test data determined from the experimental database. Model performances were evaluated comparatively with other analytical models most commonly used in the literature, and it was found that the closest results to experimental data were obtained from the proposed strength and strain models.

A new conjugate gradient method for dynamic load identification of airfoil structure with randomness

  • Lin J. Wang;Jia H. Li;You X. Xie
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.301-309
    • /
    • 2023
  • In this paper, a new modified conjugate gradient (MCG) method is presented which is based on a new gradient regularizer, and this method is used to identify the dynamic load on airfoil structure without and with considering random structure parameters. First of all, the newly proposed algorithm is proved to be efficient and convergent through the rigorous mathematics theory and the numerical results of determinate dynamic load identification. Secondly, using the perturbation method, we transform uncertain inverse problem about force reconstruction into determinate load identification problem. Lastly, the statistical characteristics of identified load are evaluated by statistical methods. Especially, this newly proposed approach has successfully solved determinate and uncertain inverse problems about dynamic load identification. Numerical simulations validate that the newly developed method in this paper is feasible and stable in solving load identification problems without and with considering random structure parameters. Additionally, it also shows that most of the observation error of the proposed algorithm in solving dynamic load identification of deterministic and random structure is respectively within 11.13%, 20%.

Adaptive Neuro-fuzzy-based modeling of exhaust emissions from dual-fuel engine using biodiesel and producer gas

  • Prabhakar Sharma;Avdhesh Kr Sharma
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2022
  • The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.

Development of engineering software to predict the structural behavior of arch dams

  • Altunisik, Ahmet Can;Kalkan, Ebru;Basaga, Hasan Basri
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.87-112
    • /
    • 2018
  • In this study, it is aimed to present engineering software to estimate the structural response of concrete arch dam. Type-1 concrete arch dam constructed in the laboratory is selected as a reference model. Finite element analyses and experimental measurements are conducted to show the accuracy of initial model. Dynamic analyses are carried out by spectrum analysis under empty reservoir case considering soil-structure interaction and fixed foundation condition. The displacements, principal stresses and strains are presented as an analysis results at all nodal points on downstream and upstream faces of dam body. It is seen from the analyses that there is not any specific ratio between prototype and scaled models for each nodal point with different scale values. So, dynamic analyses results cannot be generalized with a single formula. To eliminate this complexity, the regression analysis, which is a statistical method to obtain the real model results according to the prototype model by using fitting curves, is used. The regression analysis results are validated by numerical solutions using ANSYS software and the error percentages are examined. It is seen that 10% error rates are not exceeded.

Output-error state-space identification of vibrating structures using evolution strategies: a benchmark study

  • Dertimanis, Vasilis K.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.17-37
    • /
    • 2014
  • In this study, four widely accepted and used variants of Evolution Strategies (ES) are adapted and applied to the output-error state-space identification problem. The selection of ES is justified by prior strong indication of superior performance to similar problems, over alternatives like Genetic Algorithms (GA) or Evolutionary Programming (EP). The ES variants that are being tested are (i) the (1+1)-ES, (ii) the $({\mu}/{\rho}+{\lambda})-{\sigma}$-SA-ES, (iii) the $({\mu}_I,{\lambda})-{\sigma}$-SA-ES, and (iv) the (${\mu}_w,{\lambda}$)-CMA-ES. The study is based on a six-degree-of-freedom (DOF) structural model of a shear building that is characterized by light damping (up to 5%). The envisaged analysis is taking place through Monte Carlo experiments under two different excitation types (stationary / non-stationary) and the applied ES are assessed in terms of (i) accurate modal parameters extraction, (ii) statistical consistency, (iii) performance under noise-corrupted data, and (iv) performance under non-stationary data. The results of this suggest that ES are indeed competitive alternatives in the non-linear state-space estimation problem and deserve further attention.

PSO based neural network to predict torsional strength of FRP strengthened RC beams

  • Narayana, Harish;Janardhan, Prashanth
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.635-642
    • /
    • 2021
  • In this paper, soft learning techniques are used to predict the ultimate torsional capacity of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. Soft computing techniques, namely Artificial Neural Network, trained by various back propagation algorithms, and Particle Swarm Optimization (PSO) algorithm, have been used to model and predict the torsional strength of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. The performance of each model has been evaluated by using statistical parameters such as coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The hybrid PSO NN model resulted in an R2 of 0.9292 with an RMSE of 5.35 for training and an R2 of 0.9328 with an RMSE of 4.57 for testing. Another model, ANN BP, produced an R2 of 0.9125 with an RMSE of 6.17 for training and an R2 of 0.8951 with an RMSE of 5.79 for testing. The results of the PSO NN model were in close agreement with the experimental values. Thus, the PSO NN model can be used to predict the ultimate torsional capacity of RC beams strengthened with FRP with greater acceptable accuracy.

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder

  • Bazrafkan, Aryan;Habibi, Alireza;Sayari, Arash
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.463-478
    • /
    • 2020
  • Multiple mathematical modeling for prediction of slump, compressive strength and depth of water penetration at 28 days were performed using statistical analysis for the concrete containing waste limestone powder as partial replacement of sand obtained from experimental program reported in this research. To extract experimental data, 180 concrete cubic samples with 20 different mix designs were investigated. The twenty non-linear regression models were used to predict each of the concrete properties including slump, compressive strength and water depth penetration of concrete with waste limestone powder. Evaluation of the models using numerical methods showed that the majority of models give acceptable prediction with a high accuracy and trivial error rates. The 15-term regression models for predicting the slump, compressive strength and water depth were found to have the best agreement with the tested concrete specimens.

An evolutionary approach for predicting the axial load-bearing capacity of concrete-encased steel (CES) columns

  • Armin Memarzadeh;Hassan Sabetifar;Mahdi Nematzadeh;Aliakbar Gholampour
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.253-265
    • /
    • 2023
  • In this research, the gene expression programming (GEP) technique was employed to provide a new model for predicting the maximum loading capacity of concrete-encased steel (CES) columns. This model was developed based on 96 CES column specimens available in the literature. The six main parameters used in the model were the compressive strength of concrete (fc), yield stress of structural steel (fys), yield stress of steel rebar (fyr), and cross-sectional areas of concrete, structural steel, and steel rebar (Ac, As and Ar respectively). The performance of the prediction model for the ultimate load-carrying capacity was investigated using different statistical indicators such as root mean square error (RMSE), correlation coefficient (R), mean absolute error (MAE), and relative square error (RSE), the corresponding values of which for the proposed model were 620.28, 0.99, 411.8, and 0.01, respectively. Here, the predictions of the model and those of available codes including ACI ITG, AS 3600, CSA-A23, EN 1994, JGJ 138, and NZS 3101 were compared for further model assessment. The obtained results showed that the proposed model had the highest correlation with the experimental data and the lowest error. In addition, to see if the developed model matched engineering realities and corresponded to the previously developed models, a parametric study and sensitivity analysis were carried out. The sensitivity analysis results indicated that the concrete cross-sectional area (Ac) has the greatest effect on the model, while parameter (fyr) has a negligible effect.