Browse > Article
http://dx.doi.org/10.12989/cac.2019.24.4.295

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming  

Alkroosh, Iyad S. (Department of Civil Engineering, College of Engineering, University of Al-Qadisiyah)
Sarker, Prabir K. (School of Civil and Mechanical Engineering, Curtin University)
Publication Information
Computers and Concrete / v.24, no.4, 2019 , pp. 295-302 More about this Journal
Abstract
Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.
Keywords
geopolymer concrete; prediction; GEP; compressive strength; training; validation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Shahin, M., Maier, H. and Jaksa, M. (2004), "Data division for developing neural networks applied to geotechnical engineering", J. Comput. Civil Eng., 18(2), 105-114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105).   DOI
2 Sonebi, M. and Cevik, A. (2009), "Genetic programming based formulation for fresh and hardened properties of selfcompacting concrete containing pulverised fuel ash", Constr. Build. Mater., 23(7), 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012   DOI
3 Standards Australia (2000), Methods of Testing Concrete. Method 10 Determination of Indirect Tensile Strength of Concrete Cylinders ('Brazil' or splitting test): 8.
4 Standards Australia (2014), Methods of Testing Concrete- Compressive Strength Tests-Concrete, Mortar and Grout Specimens (AS 1012.9-2014).
5 Swanepoel, J.C. and Strydom, C.A. (2002), "Utilisation of fly ash in a geopolymeric material", Appl. Geochem., 17(8), 1143-1148. https://doi.org/10.1016/S0883-2927(02)00005-7.   DOI
6 van Jaarsveld, J.G., van Deventer, J.S. and Lukey, G.C. (2002), "The effect of composition and temperature on the properties of fly ash and Kaolinitebased geopolymers", Chem. Eng. J., 89(1-3), 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6.   DOI
7 van Jaarsveld, J.G., van Deventer, J.S. and Lukey, G.C. (2003), "The characterisation of source naterials in fly ash-based geopolymers", Mater. Lett., 57(7), 1272-1280. https://doi.org/10.1016/S0167-577X(02)00971-0.   DOI
8 Xu, H. and van Deventer, J.S. (2000), "The geopolymerisation of Alumino-Silicate ninerals", Int. J. Min. Pr., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5.   DOI
9 Xu, H. and van Deventer, J.S. (2002), "Geopolymerisation of multiple minerals", Min. Eng., 15(12), 1131-1139. https://doi.org/10.1016/S0892-6875(02)00255-8.   DOI
10 Yeh, C. (2006), "Exploring concrete slump model using artificial neural networks", J. Comput. Civil Eng., 20(3), 217-221. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(217).   DOI
11 Duan, Z.H., Kou, S.C. and Poon, C.S. (2013a), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.   DOI
12 Castelli, M., Trujillo, L., Goncalves, I. and Popovic, A. (2017), "An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming", Comput. Concrete, 19(6), 651-658. https://doi.org/10.12989/cac.2017.19.6.657.   DOI
13 Chen, L. (2003), "Study of applying macroevolutionary genetic programming to concrete strength estimation", J. Comput. Civil Eng., 17(4), 290-294. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(290).   DOI
14 Davidovits, J. (1999), "Chemistry of geopolymeric systems terminology", Proc. 99 International Geopolymer Conf. Saint- Quentin, France.
15 Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. http://dx.doi.org/10.12989/cac.2016.18.2.155.   DOI
16 ACAA (American Coal Ash Association: 74) (2003), Fly Ash Facts for Highway Engineers, Aurora, USA.
17 Deshpande, N., Londhe, S. and Kulkarni, S. (2014), "Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and nonlinear regression", Int. J. Sustain. Build. Environ., 3, 187-198. https://doi.org/10.1016/j.ijsbe.2014.12.002.   DOI
18 Dreyfus, G. (2005), Neural Networks Methodology and Applications, Berlin Heidelberg, Springer-Verlag, Germany.
19 Duan, Z.H., Kou, S.C. and Poon, C.S. (2013b), "Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete", Constr. Build. Mater., 44, 524-532. https://doi.org/10.1016/j.conbuildmat.2013.02.064.   DOI
20 Gandomi, A.H., Alavi, A.H. and Arjmandi, P. (2010), "Genetic programming and orthogonal leas t squares: a hybrid approach to modelling the compressive strength of CFRP-confined concrete cylinders", J. Mech. Mater. Struct., 5(5), 735-753. https://doi.org/10.2140/jomms.2010.5.735.   DOI
21 Gazder, U., Al-Amoudi, O., Saad Khan, S. and Maslehuddin, M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.   DOI
22 Barbosa, V.F., MacKenzie, K.J. and Thaumaturgo, C. (1999), "Synthesis and characterisation of sodium polysialate inorganic polymer based on alumina and silica", Proc. 99 Int. Geopolymer Conf. Saint-Quentin, France.
23 Alkroosh, I. and Ammash, H. (2015), "Soft computing for modelling punching shear of reinforced concrete flat slabs", Ain Shams Eng. J., 6(2), 439-448. https://doi.org/10.1016/j.asej.2014.12.001.   DOI
24 Andric, I., Jamali-Zghal, N., Santarelli. M. and Le Corre, O. (2015), "Environmental performance assessment of retrofitting existing coal fired power plants to co-firing with biomass: carbon footprint and energy approach", J. Clean. Prod., 103, 13-27. https://doi.org/10.1016/j.jclepro.2014.08.019.   DOI
25 AS (Australian Standard) (1999), Methods of Testing Concrete- Method 9: Determination of the Compressive Strength of Concrete Specimens.
26 Barbosa, V.F., MacKenzie, K.J. and Thaumaturgo, C. (2000), "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers", Int. J. Inorganic Mater., 2(4), 309-317. https://doi.org/10.1016/S1466-6049(00)00041-6.   DOI
27 Behnood, A., Olek, J. and Glinicki, M. (2015), "Predicting modulus elasticity of recycled aggregate concrete using M5' model tree algorithm", Constr. Build. Mater., 94, 137-147. https://doi.org/10.1016/j.conbuildmat.2015.06.055.   DOI
28 Gonzalez-Taboada, I., Gonzalez-Fonteboa, B., Martinez-Abella, F. and PerezOrdonez, J. (2016), "Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming", Constr. Build. Mater., 106, 480-499. https://doi.org/10.1016/j.conbuildmat.2015.12.136.   DOI
29 Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Research Report GC1, Faculty of Engineering, Curtin University of Technology, Perth, Australia.
30 Heidrich, C. (2002), "Ash utilisation - An australian perspective", Proc. Int. Conf. on Geopolymers, Melbourne, Australia.
31 Kiani, B., Gandomi, A., Sajedi, S. and Liang R. (2016), "New formulation of compressive strength of preformed-foam cellular concrete: an evolutionary approach", J. Mater. Civil Eng., 28(10), 04016092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001602.   DOI
32 Lachtermacher, G. and Fuller, J. (1994), "Back-propagation in hydrological times series forcasting", Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Eds. Hipel K.W., Panu U. S., Singh V.P., 229, Kluer Academic Publisher Group, The Netherlands.
33 Master, T. (1993), Practical Neural Network Recipes in C++, Academic Press, San Diego, California.
34 Mousavi, S.M., Aminian, P. and Gandomi, A.H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.   DOI
35 Mukherjee, A. and Deshpande, J. (1995), "Modelling initial design process using artificial neural networks", J. Comput. Civil Eng., 9(3), 194-200. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:3(194).   DOI
36 Reitermanova, Z. (2010), "Data splitting", WDS'10 Proceedings of Contributed Papers, Part I, 31-36.
37 Younis, K.H. and Pilakoutas, K. (2013), "Strength prediction model and methods for improving recycled aggregate concrete", Constr. Build. Mater., 49(2013), 688- 701. https://doi.org/10.1016/j.conbuildmat.2013.09.003.   DOI
38 Nazari, A. and Riahi, S. (2011), "Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming", Compos. Part B: Eng., 42(3), 473-488. https://doi.org/10.1016/j.compositesb.2010.12.004.   DOI
39 Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modelling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021.   DOI
40 Palomo, A., Grutzeck, M. and Blanco, M. (1999), "Alkaliactivated fly ashes, a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9.   DOI
41 Rodgers, J.L. and Nicewander, W.A. (1988), "Thirteen ways to look at correlation coefficient", Am. Statist., 42(1), 59-66. https://doi.org/10.1080/00031305.1988.10475524.   DOI
42 Roy, D.M. (1999), "Alkali-activated cements, opportunities and challenges", Cement Concrete Res., 29(2), 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3.   DOI
43 Rubenstein, M. (2012), "Policy shifts toward an energy system transition: The dynamics of advocacy coalitions and New York State's renewable portfolio standard", MS Thesis, New York.
44 Saridemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.   DOI