Browse > Article
http://dx.doi.org/10.12989/cac.2021.28.6.635

PSO based neural network to predict torsional strength of FRP strengthened RC beams  

Narayana, Harish (Department of Civil Engineering, National Institute of Technology Goa)
Janardhan, Prashanth (Department of Civil Engineering, National Institute of Technology Silchar)
Publication Information
Computers and Concrete / v.28, no.6, 2021 , pp. 635-642 More about this Journal
Abstract
In this paper, soft learning techniques are used to predict the ultimate torsional capacity of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. Soft computing techniques, namely Artificial Neural Network, trained by various back propagation algorithms, and Particle Swarm Optimization (PSO) algorithm, have been used to model and predict the torsional strength of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. The performance of each model has been evaluated by using statistical parameters such as coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The hybrid PSO NN model resulted in an R2 of 0.9292 with an RMSE of 5.35 for training and an R2 of 0.9328 with an RMSE of 4.57 for testing. Another model, ANN BP, produced an R2 of 0.9125 with an RMSE of 6.17 for training and an R2 of 0.8951 with an RMSE of 5.79 for testing. The results of the PSO NN model were in close agreement with the experimental values. Thus, the PSO NN model can be used to predict the ultimate torsional capacity of RC beams strengthened with FRP with greater acceptable accuracy.
Keywords
artificial neural network; fiber reinforced polymer; particle swarm optimization; prediction; RC beams; torsional strength;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.   DOI
2 Bashir, Z.A. and El-Hawary, M.E. (2009), "Applying wavelets to short-term load forecasting using PSO-based neural networks", IEEE Trans. Power Syst., 24(1), 20-27. https://doi.org/10.1109/TPWRS.2008.2008606.   DOI
3 Chalioris, C.E. (2007), "Tests and analysis of reinforced concrete beams under torsion retrofitted with FRP strips", WIT Transac. Model. Sim., 46, 10. https://doi.org/10.2495/CMEM070631.   DOI
4 Clerc, M. (2010), Particle Swarm Optimization, John Wiley and Sons.
5 Erdem, H. (2017), "Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks", Comput. Concrete, 19(6), 711-716. https://doi.org/10.12989/cac.2017.19.6.711.   DOI
6 Kamal, O., EL-Mahdy, O., Nour, M. and EL-Komy, G. (2014), Optimization of Steel Structures Using Particle Swarm Technique.
7 Keshavarz, Z. and Torkian, H. (2018), "Application of ANN and ANFIS models in determining compressive strength of concrete", Soft Comput. Civil Eng., 2(1), 62-70. https://doi.org/10.22115/scce.2018.51114.   DOI
8 Mohammadizadeh, M.R. and Fadaee, M.J. (2009), "Experimental investigation on torsional strengthening of high-strength concrete beams using CFRP sheets", Kuwait J. Sci. Eng., 36. https://doi.org/10.28991/cej-2020-SP(EMCE)-07.   DOI
9 Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008.   DOI
10 Kandekar, S.B. and Talikoti, R.S. (2020), "Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber", Adv. Concete Constr., 9(1), 1-7. https://doi.org/10.12989/acc.2020.9.1.001.   DOI
11 Hashemi, S.S., Sadeghi, K., Fazeli, A. and Zarei, M. (2019), "Predicting the weight of the steel moment-resisting frame structures using artificial neural networks", Int. J. Steel Struct., 19(1), 168-180. https://doi.org/10.1007/s13296-018-0105-z.   DOI
12 Yang, L. and An, X. (2020), "Estimating the workability of self-compacting concrete in different mixing conditions based on deep learning", Comput. Concrete, 25(5), 433-445. https://doi.org/10.12989/cac.2020.25.5.433.   DOI
13 Eberhart, R. and Kennedy, J. (1995), "Particle swarm optimization", Proceedings of the IEEE International Conference on Neural Networks, Perth, November. https://doi.org/10.1109/ICNN.1995.488968.   DOI
14 Kandekar, S.B. and Talikoti, R.S. (2019), "Torsional behaviour of reinforced concrete beam wrapped with aramid fiber", J. King Saud Univ., Eng. Sci., 31(4), 340-344. https://doi.org/10.1016/j.jksues.2018.02.001.   DOI
15 Farahnaki, R. (2017), "The application of particle swarm optimization and artificial neural networks to estimating the strength of reinforced concrete flexural members", Soft Comput. Civil Eng., 1(2), 1-7. https://doi.org/10.22115/scce.2017.48443.   DOI
16 Ghobarah, A. (2001), "Torsional strengthening of reinforced concrete beams", In FRP Composites in Civil Engineering. Proceedings of the International Conference on FRP composites in Civil Engineering, Hong Kong.
17 Harish, N. and Janardhan, P. (2021), "Support vector machine in predicting epoxy glass powder mixed cement concrete", Mater. Today Proc., 46, 9042-9046. https://doi.org/10.1016/j.matpr.2021.05.385.   DOI
18 Hii, A.K. and Al-Mahaidi, R. (2006), "Experimental investigation on torsional behavior of solid and box-section RC beams strengthened with CFRP using photogrammetry", J. Compos. Constr., 10(4), 321-329. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:4(321).   DOI
19 Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.   DOI
20 Hakim, S.J.S. and Abdul Razak, H. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel Compos. Struct., 14(4), 367-377. https://doi.org/10.12989/scs.2013.14.4.367.   DOI
21 Safiuddin, M., Raman, S., Salam, A. and Jumaat, M. (2016), "Modeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ash", Mater., 9(5), 396. https://doi.org/10.3390/ma9050396.   DOI
22 Raza, A., Ali, B. and Rehman, A. (2020), "Structural performance of steel-tube concrete columns confined with CFRPs: numerical and theoretical study", Iran. J. Sci. Tech., 1-18. https://doi.org/10.1007/s40996-020-00492-9.   DOI
23 Raza, A., Ali, B., Masood, B. and Rehman, A. (2021), "Axial performance of GFRP composite bars and spirals in circular hollow concrete columns", Struct., 29, 600-613. https://doi.org/10.1016/j.istruc.2020.11.043.   DOI
24 Saduf, M.A.W. and Wani, A. (2013), "Comparative study of back propagation learning algorithms for neural networks", Int. J. Adv. Res. Comput. Sci. Softw. Eng., 3(12), 7292574.
25 Raza, A., Rafique, U., Masood, B., Ali, B., ul Haq, F. and Nawaz, M.A. (2021), "Performance evaluation of hybrid fiber reinforced low strength concrete cylinders confined with CFRP wraps", Struct., 31, 182-189. https://doi.org/10.1016/j.istruc.2021.01.103.   DOI
26 Ilkhani, M.H., Moradi, E. and Lavasani, M. (2017), "Calculation of torsion capacity of the reinforced concrete beams using artificial neural network", Soft Comput. Civil Eng., 1(2), 8-18. https://doi.org/10.22115/SCCE.2017.48685.   DOI
27 Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017), "ANN model for predicting the compressive strength of circular steel-confined concrete", Int. J. Civil Eng., 15(2), 213-221. https://doi.org/10.1007/s40999-016-0096-0.   DOI
28 Al-Jabri, K.S. and Al-Alawi, S.M. (2010), "An advanced ANN model for predicting the rotational behaviour of semi-rigid composite joints in fire using the back-propagation paradigm", Int. J. Steel Struct., 10(4), 337-347. https://doi.org/10.1007/BF03215842.   DOI
29 Hassoun, M.H. (1995), Fundamentals of Artificial Neural Networks, MIT Press, London, England.
30 Panchacharam, S. and Belarbi, A. (2002), "Torsional behavior of reinforced concrete beams strengthened with FRP composites", First FIB Congress, Osaka, October.
31 Shen, K., Wan, S., Mo, Y.L. and Jiang, Z. (2018), "Theoretical analysis on full torsional behavior of RC beams strengthened with FRP materials", Compos. Struct., 183, 347-357. https://doi.org/10.1016/j.compstruct.2017.03.084.   DOI
32 Ameli, M., Ronagh, H.R. and Dux, P.F. (2007), "Behavior of FRP strengthened reinforced concrete beams under torsion", J. Compos. Constr., 11(2), 192-200.   DOI
33 Cevik, A., Arslan, M.H. and Saracoglu, R. (2012), "Neuro-fuzzy modeling of torsional strength of RC beams", Comput. Concrete., 9(6), 469-486. https://doi.org/10.12989/cac.2012.9.6.469.   DOI
34 Ghobarah, A., Ghorbel, M.N. and Chidiac, S.E. (2002), "Upgrading torsional resistance of reinforced concrete beams using fiber-reinforced polymer", J. Compos. Constr., 6(4), 257-263. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(257).   DOI
35 Tang, C.W. (2006), "Using radial basis function neural networks to model torsional strength of reinforced concrete beams", Comput. Concrete, 3(5), 335-355. https://doi.org/10.12989/cac.2006.3.5.335.   DOI
36 Tibhe, S.B. and Rathi, V.R. (2016), "Comparative Experimental Study on Torsional Behavior of RC Beam Using CFRP and GFRP Fabric Wrapping", Proc. Tech., 24, 140-147. https://doi.org/10.1016/j.protcy.2016.05.020.   DOI