• 제목/요약/키워드: static reliability model

검색결과 105건 처리시간 0.025초

모델 기반 내장형 소프트웨어의 효율적 신뢰성 시험 기법 (An Efficient Software Reliability Testing Method for the Model based Embedded Software)

  • 박장성;조성봉;박현룡;김도완;김성균
    • 한국시뮬레이션학회논문지
    • /
    • 제27권1호
    • /
    • pp.25-32
    • /
    • 2018
  • 본 논문은 모델 기반 내장형 소프트웨어의 자동 생성 코드에 대한 효율적인 신뢰성 시험 절차와 구체화된 동적 시험 방안에 대해서 제시하고 있다. 모델 정적/동적 시험 각각을 코드 정적/동적 시험 전에 수행함으로서 코드 신뢰성 시험 수행의 이점이 있음을 기술하였다. 또한, 모델과 코드의 신뢰성 시험 상관관계를 모델의 경우 Model Advisor와 Verification and Validation tool, 코드의 경우 Polyspace와 LDRA를 이용하여 살펴보고 제시한 절차대로 수행한 신뢰성 시험의 결과를 보여주고 있다.

지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법 (Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

경사제 피복재의 안정성 해석에 대한 정적 신뢰성 모형의 비교 (Comparison of Static Reliability Models on Stability Analysis of Armor of Rubble-Mound Breakwaters)

  • 김성호;이철응
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.205-214
    • /
    • 2004
  • Static reliability models are introduced to analyze the armor stability of rubble-mound breakwaters. Contrasted to the deterministic model, reliability models can estimate the probability of failure directly and calculate the influence of each design variables quantitatively. Thus, it can be possible to design armor units of the rubble-mound breakwaters rationally. In this study FMA(First-order Mean-value Approach), FDA(First-order Design-value Approach) and AFDA(Approximate Full Distribution Approach) of Level II approach of static reliability methods are used to analyze the armor stability of rubble mound breakwaters. The limitations and applications of each approach are studied straight-forwardly.

  • PDF

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

모형토조실험을 통한 말뚝지지력의 평가 (Evaluation of Pile Bearing Capacity using Calibration Chamber Test)

  • 이인모;이명환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1992년도 봄 학술발표회 논문집 깊은 기초의 연구와 실무(RESEARCH AND PRACTICE OF DEEP FOUNDATIONS)
    • /
    • pp.13-40
    • /
    • 1992
  • Static formulae based on limiting equilibrium theories often provide misleading predictions of pile bearing capacity in cohesionless soils due to the incorrect basic assumptions or oversimplification of actual soil conditions. Soil conditions prior to pile driving are significantly changed after pile installation and imposition of high stress levels. Therefore soi1 parameters at failure rather than those obtained at initial conditions should be used in application of static formulae. In this research. model pile test data were analyzed and compared with the predicted values obtained from the various static formulae. The results showed that the proper choice of soil parameters remarkably improve the reliability of static formulae.

  • PDF

경사제 피복재의 안정성 해석에 대한 동적 신뢰성 모형의 적용 (Application of Dynamic Reliability Model to Analysis of Armor Stability of Rouble-Mound Breakwaters)

  • 김성호;이철응
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.215-226
    • /
    • 2004
  • A dynamic reliability model which can take into account the time history of loading sequences may be applied to the analyses of the hydraulic stability of armor units on rubble-mound breakwaters. All the parameters related to the stability of structures have been considered to be constants in the deterministic model until now. Thus, it is impossible to study the effects of some uncertainties of the related random variables on the stability of structures. In this paper, the dynamic reliability model can be developed by POT(Peak Over Threshold) method in order to take into account the time history of loading sequences and to investigate the temporal behaviors of stability of structure with its loading history. Finally, it is confirmed that the results of dynamic reliability model agree with straight- forwardly those of AFDA(Approximate Full Distribution Approach) of the static reliability model for the same input conditions. In addition, the temporal behaviors of probability of failure can be studied by the dynamic reliability model developed to analyze the hydraulic stability of armor units on rubble-mound breakwaters. Therefore, the present results may be useful for the management of repair and maintenance over the whole life cycle of structure.

  • PDF

Reliability Design Based on System Performance-Cost Trade-off for Manufacturing facility

  • Hwang, Heung-Suk;Hwang, Gyu-Wan
    • International Journal of Reliability and Applications
    • /
    • 제2권4호
    • /
    • pp.269-280
    • /
    • 2001
  • The objective of this paper is to provide a model for effective implementation of costing RAM management in the design and procurement of production facility considering the system cost-performance trade-off. This research proposes a two-step approach of costing RAM design and test of system RAM for production facility. In Step 1, a static model is proposed to find an initial system configuration to meet the required performance based on system RAM and LCC and analyzes the trade-off relationships between various factors of RAM and LCC. In the second Step, we developed time and failure truncated models for system reliability test and analysis. For the computational purpose, we developed computer programs and have shown the sample results. By the sample test run, the proposed model has shown the possibilities to provide a good method to analyze system performance evaluation for both design and operational phase, This model can be applied to a wide variety of systems not only for costing RAM of the production facilities but also for the other kinds of equipment.

  • PDF

마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석 (Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling)

  • 박원석;옥승용
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.