• 제목/요약/키워드: static force analysis

검색결과 664건 처리시간 0.03초

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

중재 시술 적용을 위한 소형 연속체 로봇의 정역학 모델링 및 외부 측면 하중에 의한 변위 분석 (Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads)

  • 김기영;우현수;조장호;신민기;서정욱
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.301-308
    • /
    • 2020
  • In this paper, we deal with the static modeling of a continuum robot that can perform surgical interventions. The proposed continuum robot is made of stainless steel wires and a multi lumen flexible tube using a thermoplastic elastomer. This continuum robot could be most severely deformed in physical contact with narrow external environments, when a lateral external force acts at the distal tip of the continuum robot. In order to predict the shape and displacement under the lateral external force loading, the forward kinematics, the statics modeling, the force-moment equilibrium equation, and the virtual work-energy method of the continuum robot are described. The deflection displacements were calculated using the virtual work-energy method, and the results were compared with the displacement obtained by the conventional cantilever beam theories. In conclusion, the proposed static modeling and the virtual work-energy method can be used in arrhythmia procedure simulations.

스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증 (Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load)

  • 이동섭;김인수;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

예비 지구과학 교사의 전향력 개념에 대한 정신모형 변화 분석 (An Analysis of Preservice Earth Science Teachers' Mental Models about Coriolis Force Concept)

  • 김은주;이현동;이효녕
    • 한국과학교육학회지
    • /
    • 제36권3호
    • /
    • pp.423-434
    • /
    • 2016
  • 이 연구의 목적은 연구자가 개발한 전향력 실험 장치를 통해 예비 지구과학 교사들이 가진 정신모형의 변화를 알아보는 것이다. 예비 지구과학 교사 5명을 대상으로 전향력에 대하여 질문지에 제시된 그림 그리기와 면담을 통해 전향력 실험 장치를 활용한 활동을 수행하기 전과 후의 정신모형을 조사하고 그 변화를 비교하였다. 정신모형 수준이 낮은 단계인 소박한 정신모형이었던 두 학생은 개발된 전향력 실험 장치를 통한 활동을 통해 정적 불안정 모형과 동적 불안정 모형으로 향상되었다. 그리고 활동 전 정적 불안정 모형을 보여주었던 두 학생은 활동 후 모두 동적 불안정 모형으로 변화하였다. 마지막으로 활동 전 동적 불안정 모형을 보여주었던 학생은 활동 후에도 동적 불안정 모형에 남아있었지만 이미 가지고 있었던 선개념이 과학적 개념으로 많이 변화한 모습을 보여주었다. 이 연구를 통해 개발된 전향력 실험 장치 활용이 학생들의 전향력 개념의 학습에서 안정적이고 과학적인 개념 형성에 효과적이었음을 확인할 수 있었다. 개발된 전향력 실험 장치가 학교 현장에서 전향력과 관련된 수업에 효과적으로 사용될 필요가 있으며 나아가 위의 예비 지구과학 교사들이 교사가 되어 학교 현장에서 학생들을 가르치는 동안 나타나는 정신모형의 변화에 대해서도 알아볼 필요가 있다.

진원형 정수압 베어링의 해석 및 실험적 고찰 (Analysis and Experimental Investigation of Cylindrical Hydrostatic Bearing)

  • 문호지;한동철
    • Tribology and Lubricants
    • /
    • 제6권1호
    • /
    • pp.57-67
    • /
    • 1990
  • For increasing the performance of Machine tools, the improvement of the static and dynamic characteristics of spindle bearing is important. In this paper are the static characteristics, the pressure distribution, friction force and outlet flow rate, and the dynamic characteristics stiffness and damping coefficient, of a cylindrical hydrostatic journal bearing with multi oil pockets are analyzed.

A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes

  • Motlagh, Ali Tafreshi;Ghanbari, Ali;Maedeh, Pouyan Abbasi;Wu, Wei
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.687-699
    • /
    • 2018
  • This paper investigates the pseudo-static analysis of reinforced slopes with geosynthetics under the influence of the uniform surcharge to evaluate the maximum tensile force of reinforcements. The analytical approach has basically been used to develop the new practical procedure to estimate both tensile force and its distribution in the height of the slope. The base of developed relationships has been adapted from the conventional horizontal slice method. The limit equilibrium framework and the assumptions of log-spiral failure surface have directly been used for proposed analytical approach. A new analytical approach considering a single layer of non-cohesion soil and the influence of uniform surcharge has been extracted from the 5n equation and 5n unknown parameters. Results of the proposed method illustrated that the location of the surcharge, amount of internal friction and the seismic coefficient have the remarkable effect on the tensile force of reinforcement and might be 2 times increasing on it. Furthermore, outcomes show that the amount of tensile force has directly until 2 times related to the amount of slope angle and its height range. Likewise, it is observed that the highest value of the tensile force in case of slope degree more than 60-degree is observed on the lower layers. While in case of less degree the highest amount of tensile force has been reported on the middle layers and extremely depended to the seismic coefficient. Hence, it has been shown that the tensile force has increased more than 6 times compared with the static condition. The obtained results of the developed procedure were compared with the outcomes of the previous research. A good agreement has been illustrated between the amount results of developed relationships and outcomes of previous research. Maximum 20 and 25 percent difference have been reported in cases of static and seismic condition respectively.

IMV 비례 유량제어밸브 정특성 선형해석 (Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

질감 제시 장치를 이용한 촉감인지 특성 연구 (Study of Human Tactile Sensing Characteristics Using Tactile Display System)

  • 손승우;경기욱;양기훈;권동수
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.451-456
    • /
    • 2005
  • This paper describes three kinds of experiments and analysis of their results related to human tactile sensitivity using an integrated tactile display system. The device can provide vibration, normal pressure and lateral slip/stretch which are important physical quantities to sense texture. We have tried to find out the efficient method of stimulating, limitation of surface discrimination by kinesthetic farce feedback and the effectiveness of the combination of kinesthetic force and tactile feedback. Seven kinds of different stimulating methods were carried out and they are single or combination of the kinesthetic force, normal static pressure, vibration, active/passive shear and moving wave. Both prototype specimen and stimulus using tactile display were provided to all examinees and they were allowed to answer the most similar sample. The experimental results show that static pressure is proper stimulus for the display of micro shape of the surface and vibrating stimulus is more effective for the display of fine surface. And the sensitivities of active touch and passive touch are compared. Since kinesthetic force feedback is appropriate to display shape and stiffness of an object, but roughness display has a limitation of resolution, the concurrent providing methods of kinesthetic and tactile feedback are applied to simulate physical properties during touching an object.

정적 외연적 유한요소법을 이용한 드로우비드 형상에 따른 비드공정 해석 (The Analysis of Draw-bead Process According to the Effect of the Drawbead Shape by Using Static-explicit Finite Element Method)

  • 정동원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.275-281
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critial Problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

이중링크 형식 수평인입 집 크레인의 정적·동적 해석 (Static and Dynamic Analysis for a Double Link Type Level Luffing Jib Crane)

  • 문덕홍;허철원
    • 한국강구조학회 논문집
    • /
    • 제12권6호
    • /
    • pp.715-725
    • /
    • 2000
  • 본 논문은 링크구성 설계를 통하여 결정된 하나의 이중링크 형식 수평인입 집 크레인에 대하여 작업위치에 따라 각 링크의 변위, 속도, 가속도 해석을 하고, 인입 가감속에 의한 관성력, 바람에 의한 풍하중, 크레인 자중 및 정격 권상하중 등이 크레인에 작용할 때 인입장치에 요구되는 정적 힘을 계산하였다. 모든 해석과정은 전산 프로그램으로 작성되었고, 프로그램의 신뢰성은 관련 범용 소프트웨어들의 해석 결과와 비교하여 검증하였다. 따라서, 본 논문에서 개발한 전산 프로그램은 이중링크 형식 수평인입 집 크레인의 설계 실무에 있어서 이동하중에 대한 인입궤적의 진폭 및 작업위치에 따라 인입장치에 요구되는 힘의 해석을 신속, 정확하게 처리할 수 있어 설계의 생산성 및 신뢰성 제고뿐만 아니라 기본설계 기술력의 확보 측면에서 그 의의가 있다.

  • PDF