• 제목/요약/키워드: static element stiffness matrix

검색결과 74건 처리시간 0.022초

공작기계 베어링 결합부의 전산 모델링 (Computational Modeling of the Bearing Coupling Section of Machine Tools)

  • 김현명;서재우;박형욱
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1050-1055
    • /
    • 2012
  • The bearing coupling section of machine tools is the most important factor to determine their static/dynamic stiffness. To ensure the proper performance of machine tools, the static/dynamic stiffness of the rotating system has to be predicted on the design stage. Various parameters of the bearing coupling section, such as the spring element, node number and preload influence the characteristics of rotating systems. This study focuses on the prediction of the static and dynamic stiffness of the rotating system with the bearing coupling section using the finite element (FE) model. MATRIX 27 in ANSYS has been adopted to describe the bearing coupling section of machine tools because the MATRIX 27 can describe the bearing coupling section close to the real object and is applicable to various machine tools. The FE model of the bearing couple section which has the sixteen node using MATRIX 27 was constructed. Comparisons between finite element method (FEM) predictions and experimental results were performed in terms of the static and dynamic stiffness.

전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬 (Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams)

  • 김남일;곽태영;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석 (Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method)

  • 조재혁;김현욱;최영휴
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

배영계의 진동해소를 위한 주파수종속 요표행렬 (Frequency-Dependent Element Matrices for Vibration Analysis of Piping Systems)

  • 양보석;안영홍;최원호
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.125-132
    • /
    • 1992
  • This paper presents an approach for the derivation of frequency-dependent element matrices for vibration analysis of piping systems containing a moving medium. The dynamic stiffness matrix is deduced from transfer matrix, and, in turn, the frequency-dependent element matrices are derived. Numerical examples show that method gives more accurate results than those obtained using the conventional static shape function based element matrices.

  • PDF

등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산 (Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates)

  • 윤태혁;김정운;이재복
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

박벽 곡선보의 엄밀한 탄성요소강도행렬 (Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam)

  • 김남일;윤희택;이병주;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF

박벽보-기둥 요소의 개선된 정적 요소강성행렬 (Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements)

  • 윤희택;김남일;김문영;길흥배
    • 한국강구조학회 논문집
    • /
    • 제14권4호
    • /
    • pp.509-518
    • /
    • 2002
  • 비대칭 단면을 갖는 박벽보의 3차원 휨-배틂 좌굴해석 및 정적해석을 위하여, 평형방정식과 힘-변위 관계식을 이용하여 엄밀한 정적요소강성행렬을 수치적으로 산정하는 개선된 기법을 제시한다. 먼저 14개의 변위피라미터를 도입하여 고차의 연립미분방정식을 1차 연립미분방정식으로 변환하고, 복소수 영역에서 선형고유치문제를 해를 구한다. 이 경우 동적강성행렬을 산정하는 경우와는 달리 복수개의 '영'의 고유치가 발생한다. 이에 대응하는 변위피라미터의 다항식을 항등식 조거능로부터 구하고, 이를 고유치와 결합하여 박벽보 요소의 엄밀한 처짐함수를 구한다. 이렇게 구한 엄밀한 처짐함수에 재단력-변위 관계식을 적용하여 세가지 초기단면력 조건에 대응하는 엄밀한 정적요소강성행렬을 산정한다. 본 방법의 타당성을 보이기 위하여 비대칭 박벽보의 좌굴하중과 처짐값을 계산하고 해석해나 ABAQUS 쉘요소를 이용한 해석결과 및 직선보요소를 사용한 유한요소해의 결과와 비교, 검증한다.

비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬 (Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams)

  • 윤희택;김문영;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF

탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법 (Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations)

  • 김남일;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF

6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석- (On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses-)

  • 김정운;정래훈;권영두
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.