• Title/Summary/Keyword: static design

Search Result 3,384, Processing Time 0.034 seconds

A study on optimum design and high efficiency operation for commutatorless Kramer type slip power recovery system of induction motor (유도전동기의 무정류자 크레므형 슬립전력회수 시스템의 적정설계 및 고효율화 운전에 관한 연구)

  • 유춘식;홍순일;노창주;이형기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.59-74
    • /
    • 1987
  • In this dissertation, a complete model of commutatorless static Kramer type slip power recovery system of 3.phi. induction motor has been designed and tested in the laboratory, and the experimental results are compared with the numerical values. The main results of this study are summerized as follows. (1) Maintenance and repair of the mechanical commutator is obviated by adopting a thyristor commutator in place of the mechanical commutator in the conventional Kramer system. (2) The experimental results of developed torque, and stator current are generally coincided with the numerical values obtained by the derived equation, proving their validity. (3) This system is simulated and the following operational characteristics are obtained with suitable design values : (a) The speed control range of 7:1 is obtained when the turn ratio of induction motor is lowered to about 3:1 to 4:1 and the generating constant of auxiliary synchronous motor is increased to 120-175 range. (b) Its efficiency can be increased to 75-85%, the range for static Scherbius system and its power factor takes values in the range of 65-85%, which is twice of the range for static Scherbius system.

  • PDF

A Study on the 134.2kHz Band RFID(Radio Frequency Identification) Loop Antenna Design (134.2kHz 대역의 RFID 루프안테나 설계에 관한 연구)

  • 강민수;이동선;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.102-109
    • /
    • 2001
  • In this paper, it has a proposal of the RFID reader antenna design that expand the dedicated short-range communication distance between a static object on the ground and a mobile object attached on the moving article. The static reader equipped with micro-processor makes it possible to have a serial communication with a main system, so that much data can be transfer to the main system. An antenna is adjusted in order to a communication, the scale is designed by results values of simulation using matlab. It is achieved to systematically manage logistics, person resource and security system by grasping the information and location of mobile object on the basis that this system receives the information between a static reader and a mobile object tag at 134.2kHz band on real time, also to make it possible the main system to process. Therefore, the reader antenna scale is controlled on the foundation of a magnetic field theory in order to expand a recognition distance of reader and tag, so that can be optimistically recognized with minimizing the direction influence of reader and tag.

  • PDF

An Experimental Study of Ground Water Source Two Well Type Geothermal Heat Pump System (지하수 열원 복수정 지열 열펌프 시스템의 성능에 관한 실험적 연구)

  • Lim, Hyo-Jae;Kwon, Jeong-Tae;Kim, Chang-Eob;Kong, Hyoung-Jin;Park, Seong-Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.468-474
    • /
    • 2009
  • Ground water source heat pump system is the oldest one of the ground source heat pump systems. Despite of this, little formal design information has been available until recently. The important design parameters for open system are the identification of optimum ground water flow, heat exchanger selection and well pump. In this study, the capacity of 50 RT system of two well type ground water heat pump system was used. As a result, static water level was -7 m and the level during the heating operation was -32 m, cooling operation was -40 m. The initial static water level recovered within 48 hrs. The temperature of ground water is $15.6^{\circ}C$ for heating season and $16.2^{\circ}C$ for cooling season and does not depend on the outdoor temperature. Operation efficiency of the system shows that, COP 3.1 for heating and COP 4.2 for cooling.

Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties

  • Lal, Achchhe;Jagtap, Kirankumar R.;Singh, Birgu N.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.165-194
    • /
    • 2017
  • The present work proposes the thermo mechanically induced statistics of nonlinear transverse central deflection of elastically supported functionally graded (FG) plate subjected to static loadings with random system properties. The FG plate is supported on two parameters Pasternak foundation with Winkler cubic nonlinearity. The random system properties such as material properties of FG material, external loading and foundation parameters are assumed as uncorrelated random variables. The material properties are assumed as non-uniform temperature distribution with temperature dependent (TD) material properties. The basic formulation for static is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics through Newton-Raphson method. A second order perturbation technique (SOPT) and direct Monte Carlo simulation (MCS) are used to compute the nonlinear governing equation. The effects of load parameters, plate thickness ratios, aspect ratios, volume fraction, exponent, foundation parameters, and boundary conditions with random system properties are examined through parametric studies. The results of present approaches are compared with those results available in the literature and by employing direct Monte Carlo simulation (MCS).

Robust Controller Design of Non-Square Linear Systems and Its Applications (비정방 선형 시스템의 강인 제어기 설계 및 그 응용)

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.189-197
    • /
    • 2003
  • The problem of designing a parallel feedforward compensator (PFC) is considered for a class of non-square linear systems such that the closed-loop system is strictly passive. If a given square system has (vector) relative degree one and is weakly minimum phase, the system can be rendered passive by a state feedback. However, when the system states are not always measurable and the given output is considered, passivation (i.e. rendering passive) of a non-minimum phase system or a system with high relative degree cannot be achieved by any other methodologies except by using a PFC. To passivate a non-square system we first determine a squaring gain matrix and design a PFC such that the composite system has relative degree one and is minimum phase. Then the system is rendered strictly passvie by a static output feedback law. Necessary and sufficient conditions for the existence of the PFC and the squaring gain matrix are given by the static output feedback formulation, which enables to utilize linear matrix inequality (LMI). As an application of the scheme, an alternative way of replacing the role of velocity measurements is provided for the PD-control law of a convey-crane system.

A Prediction of the Static and Dynamic Horizontal Active Thrusts Exerted by a Backfill Consisting of Two or Three Layers of Different Properties (2종류 또는 3종류의 흙으로 뒷채움이 구성될 경우의 정적 및 동적 수평주동토압합력 예측)

  • Kim, Hong Taek;Kang, In Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.65-76
    • /
    • 1991
  • A numerical solution method for the evaluation of the static and dynamic horizontal active thrusts exerted by a backfill, consisting of two or three layers of different properties, on a retaining wall is proposed in the present study based on the Mononobe-Okabe analysis. Using the proposed method, the efficient type in forming a backfill with two layers of different properties is analyzed. In addition, for the design examples of a backfill made up of two or three layers of different properties, the static and dynamic horizontal active thrusts computed using the soil property of each layer are compared with those obtained from the proposed method, and also the problems expected in design are presented based on the comparisons.

  • PDF

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.

Effect of Design Shape on Fatigue Life of Plug Welded Joint (플러그 용접이음부의 피로수명에 미치는 설계형상의 영향)

  • 임재규;이중삼;서도원
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.29-35
    • /
    • 1999
  • This study was intended to use for the fatigue test in real structures and offer basic data for optimum welding structure design. To this purpose, we obserded the effect of the size and distance of plug welding hole on the static strength and fatigue life of welding structure under the shear/bending load for the improvement of fatigue life of plug welding joint between S/MBR and C/MBR in the lower structure of large bus. The result below is shown through this study. 1) Static and fatigue strength are strongly influenced by the direction of plug weld hole distributed. 2) Distances and diameters of the distributed holes are little dependent on the static strengths 3) In case of the directions of the distributed plug weld holes are vertical to the loading pin, fatigue life is dependent on distance of the distributed hole. 4) In case of the directions of the distributed plug weld holes are parallel to the loading pin, fatigue life is dependent on distance of the hole diameter.

  • PDF

Design Optimization of Valve Support with Enhanced Seismic Performance (내진성능 향상을 위한 밸브지지대 최적형상 설계)

  • Kim, Hyoung Eun;Keum, Dong Yeop;Kim, Dea Jin;Kim, Jun Ho;Hong, Seong Kyeong;Choi, Won Mok;Kim, Sang Yeong;Seok, Chang Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.997-1005
    • /
    • 2015
  • In this study, modal analysis and equivalent static load analysis for valve supports of 26" gas piping in gas stations were conducted and the existing straight and inclined types of valve supports were compared using seismic performance testing. Also, a new valve support shape was suggested by optimizing position of fastener holes, width and thickness of the support, and size of bracket. Improvement in seismic performance by design optimization was verified through equivalent static load analysis. The seismic performance of the newly proposed valve support was greatly improved and the maximum displacement and maximum stress of the seismic load was about 20% lower than those of the existing valve support.

Effect of Annealing Conditions on Microstructure and Damping Capacity in AZ61 Magnesium Alloy (열처리조건에 따른 AZ61 마그네슘 합금의 미세조직과 감쇠능에 미치는 영향)

  • Ahn, Jae-Hyeon;Kim, Kwon-Hoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.56-62
    • /
    • 2018
  • Many researchers have studied on the precipitation control after solution treatment to improve the damping capacity without decreasing the strength. However, studies on the damping capacity and microstructure changes after deformation in the solid solution strengthening alloys were inadequate, such as the Al-Zn series magnesium alloys. Therefore, in order to investigate the effect of annealing condition on microstructure change and damping a capacity of AZ61 magnesium alloy. In this study, it was confirmed that the microstructure changes affect the damping capacity and hardness when annealed AZ61 alloy. AZ61 magnesium alloy was rolled at $400^{\circ}C$ with rolling reduction of 30%. These specimens were annealed at $350^{\circ}C$ to $450^{\circ}C$ for 30-180 minutes. After annealing, microstructure was observed by using optical microscopy, and damping capacity was measured by using internal friction measurement machine. Hardness was measured by Vickers hardness tester under a condition of 0.3 N. In this study, static recrystallization was observed regardless of the annealing conditions. In addition, uniform equiaxed grain structure was developed by annealing treatment. Hardness is decreased with increasing grain size. This is associated with Hall-Petch equation and static recrystallization. In case of damping capacity, bigger grain size show the larger damping capacity.