• 제목/요약/키워드: static design

검색결과 3,394건 처리시간 0.031초

Proposed dynamic p-y curves on a single pile considering shear wave velocity of soil

  • Song, Sumin;Lim, Hyunsung;Park, Seongyong;Jeong, Sangseom
    • Earthquakes and Structures
    • /
    • 제23권4호
    • /
    • pp.353-361
    • /
    • 2022
  • The dynamic behavior of a single pile was investigated by using analytical and numerical studies. The focus of this study was to develop the dynamic p-y curve of a pile for pseudo-static analysis considering the shear wave velocity of the soil by using three-dimensional numerical analyses. Numerical analyses were conducted for a single pile in dry sand under changing conditions such as the shear wave velocity of the soil and the acceleration amplitudes. The proposed dynamic p-y curve is a shape of hyperbolic function that was developed to take into account the influence of the shear wave velocity of soil. The applicability of pseudo-static analysis using the proposed dynamic p-y curve shows good agreement with the general trends observed by dynamic analysis. Therefore, the proposed dynamic p-y curve represents practical improvements for the seismic design of piles.

LNG 선박용 알루미늄 합금 소재의 정적 및 피로 강도 평가 (Assessment for Static and Fatigue Strength of the Aluminum Alloy for LNG Ship)

  • 윤용근;김재훈;김우중;백경호;박창현
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.1-5
    • /
    • 2013
  • Liquefied Natural Gas is liquefied at the condition of atmosphere pressure and cryogenic temperature. LNG is exposed very long time under the cryogenic temperature and high pressure, and it is very important to retain the structural safety in this envelopment. Until now, the material which are composing the storage tank of LNG ship has experimented at room temperature, so it is not enough to apply for the design at the cryogenic temperature. The purposes of this study are investigated mechanical properties for aluminum alloy. To evaluate tensile and fatigue test for aluminum alloy, it was considering static and fatigue conditions at room and cryogenic temperature. S-N curves were designed at both temperature respectively. Also, P-S-N curve was performed statistical method by JSME-S002.

Thruster Control Unit 하우징, PCB의 정적 및 진동 해석

  • 김지훈;정호락;전상운;최형돈
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.124-132
    • /
    • 2004
  • 본 논문은 KSLV-I의 추력기 제어기로 사용되는 TCU(Thruster Control Unit)의 하우징과 PCB의 정적 및 진동해석에 관한 것이다. KSLV-I(Korea Space Launch Vehicle-I)에 장착되는 전자유닛들은 KSLV-I의 비행환경을 모사하는 환경시험을 통과하여야만 비행환경에서 기능 및 성능에 문제가 없다는 가정 하에 장착이 된다. 이 중 가장 문제가 되는 진동 및 충격시험에 대한 설계기준을 제시하였으며 설계된 하우징과 PCB가 이 설계 기준에 타당한지를 검토하였다. 설계기준을 만족하기 위해서 하우징을 재설계하였으며 검토결과 주어진 환경시험에 파손되지 않고 정상 작동할 것이라는 결론을 얻었다.

  • PDF

지면효과를 고려한 WIG 선 익형의 공력특성 및 형상최적화 (Aerodynamic Characteristics and Shape Optimization of Airfoils in WIG Craft Considered Ground Effect)

  • 이주희;김병삼;박경우
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1084-1092
    • /
    • 2006
  • Shape optimization of airfoil in WIG craft has been performed by considering the ground effect. The WIG craft should satisfy various aerodynamic characteristics such as lift, lift to drag ratio, and static height stability. However, they show a strong trade-off phenomenon so that it is difficult to satisfy aerodynamic properties simultaneously. Optimization is carried out through the multi-objective genetic algorithm. A multi-objective optimization means that each objective is considered separately instead of weighting. Due to the trade-off, pareto sets and non-dominated solutions can be obtained instead of the unique solution. NACA0015 airfoil is considered as a baseline model, shapes of airfoil are parameterized and rebuilt with four-Bezier curves. There are eighteen design variables and three objective functions. The range of design variables and their resolutions are two primary keys for the successful optimization. By two preliminary optimizations, the variation can be reduced effectively. After thirty evolutions, the non-dominated pareto individuals of twenty seven are obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space.

이산화탄소 해양격리 심해주입시스템의 초기설계 (Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration)

  • 최종수;홍섭;김형우;여태경
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

정압형 레디얼 공기베어링 개발 및 설계인자 영향 평가 (Development of a Static Pressure Radial Air Bearing and Estimate of Design Variables)

  • 김옥현;이규호
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.502-506
    • /
    • 2012
  • Air bearing is characterized by its extremely low friction and cleanliness such that it is widely used especially for spindles with ultra-high rotational speed at several tens of thousands rpm. This paper contributes to design of a static radial air bearing suggesting numerical analysis to anticipate its performances. The numerical analysis is an iteration method based on finite difference formulation of the Reynolds equation. A prototype air bearing has been designed and manufactured. Its load capacity has been measured and compared with the numerical solutions. The result shows good consistency between the experiment and theory, which informs that the numerical analysis can be used as an useful tool to anticipate the performances. Effects of design variables on the bearing performance have been examined by Taguchi's experimental methods using orthogonal array. Number of holes for supplying pressurized air, clearance between shaft and bearing, the hole diameter and bearing length are chosen for the design variables. The result shows that the clearance and the bearing length are the most influential variables while the others can be considered as almost negligible.

중·소구경 헬리컬 파일의 지지력 특성 (Bearing Capacity of Mid & Small dia Hellical Pile)

  • 박종배;박용부;권영환
    • 토지주택연구
    • /
    • 제11권2호
    • /
    • pp.75-86
    • /
    • 2020
  • As the urban regeneration project and the old housing maintenance project are actively progressing in Korea, small-scale building construction is being carried out in downtown areas. Small buildings in the downtown area are constructed on about 4 to 10 floors, and since they are carried out in small units in residential areas, it is difficult to enter large equipment to construct existing piles, and it is more vulnerable to complaints about noise and vibration. in this study, helical piles suitable for urban areas or small sites where it is difficult to enter large equipment, such as noise and vibration. Reliability analysis was performed on the results of the static load tests and dynamic load tests conducted at the LH site and the bearing capacity calculated by the hydrostatic method and the empirical formula (N value). As a result of comparing and analyzing the design formula and the results of static load test and dynamic load tests, the correlation between the design formula of the bored pile (Road bridge design standard) formula using N value and the design formula by the modified Davisson method frequently used by method commonly European helical file practitioners.

최적화 설계를 통한 혼합가스 성능시험용 고온 고압 용기의 제작 (Manufacture of High-temperature High-pressure Vessel for Mixed Gas Performance Test via Optimized Design)

  • 구현곤;류형민;안재웅;배영관;김진희
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.83-88
    • /
    • 2019
  • In this study, the high-temperature high-pressure vessel was successfully manufactured, which can be used to store pressurized air and to increase the temperature for the mix performance test of high-temperature high-pressure air with coolant (e.g., water). In this research, static structure analysis and transient thermal analysis were performed using the commercial software Midas NFX 2015 R1. Based on the results, the optimized pressure vessel design was carried out. As a result of the optimized design, the minimum stress and minimum weight were found at 120 mm of the vessel thickness, and the optimized pressure vessel was verified. Finally, through manufacture and performance test (e.g., the non-destructive inspection and hydraulic pressure test), the reliability and safety were validated for the designed pressure vessel.

Combination coefficient of ESWLs of a high-rise building with an elliptical cross-section

  • Wang, Qinhua;Yu, Shuzhi;Ku, Chiujen;Garg, Ankit
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.523-532
    • /
    • 2020
  • As the height and flexibility of high-rise buildings increase, the wind loads become more dominant and the combination coefficient of Equivalent Static Wind Loads (ESWLs) should be considered when they are used in the structural design. In the first phase of the study, a brief introduction to the theory on the combination coefficient for high-rise buildings was given and then the time history of wind-induced responses of a 208-meter high-rise building with an elliptical cross-section was presented based on the wind tunnel test results for pressure measurement. The correlation between wind-induced responses was analyzed and the combination coefficients of ESWLs of the high-rise buildings using Turkstra's rule, and Asami's method, were calculated and compared with related design codes, e.g., AIJ-RLB, ASCE 7-10, and China Load Code for structural design. The results of the study showed that the combination coefficients from Asami's method are conservative compared with the other three methods. The results of this paper would be helpful to the wind-resistant design of high-rise buildings with elliptical cross-section.

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.