• Title/Summary/Keyword: static compensator

Search Result 297, Processing Time 0.023 seconds

Interaction and Transient Analysis to FACTS Devices in Seoul Area (수도권 FACTS 상호영향 및 과도특성 분석)

  • Yoon, Jong-Su;Kim, Jae-Han;Lee, Seong-Doo;Choi, Jang-Hum;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1929-1935
    • /
    • 2010
  • This paper describes the operation effect of FACTS devices in the Korean power system. At the year of 2010, three FACTS devices is under commercial operation in the Seoul area. Among them, 345kV ${\pm}100MVA$ STATCOM at Mi-Geum substation and 345kV ${\pm}200MVA$ SVC at Dong-Seoul substation are very close at their electrical and geographical distance. Therefore, the additional analysis including interaction and mutual transient is necessary. Therefore, a detailed EMTDC/PSCAD simulation model was developed and steady-state/transient analysis was implemented.

A Hysteresis Current Controller for PV-Wind Hybrid Source Fed STATCOM System Using Cascaded Multilevel Inverters

  • Palanisamy, R.;Vijayakumar, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.270-279
    • /
    • 2018
  • This paper elucidates a hysteresis current controller for enhancing the performance of static synchronous compensator (STATCOM) using cascaded H-bridge multilevel inverter. Due to the rising power demand and growing conventional generation costs a new alternative in renewable energy source is gaining popularity and recognition. A five level single phase cascaded multilevel inverter with two separated dc sources, which is energized by photovoltaic - wind hybrid energy source. The voltages across the each dc source is balanced and standardized by the proposed hysteresis current controller. The performance of STATCOM is analyzed by connecting with grid connected system, under the steady state & dynamic state. To reduce the Total Harmonic Distortion (THD) and to improve the output voltage, closed loop hysteresis current control is achieved using PLL and PI controller. The performance of the proposed system is scrutinized through various simulation results using matlab/simulink and hardware results are also verified with simulation results.

A study on the DC Capacitor Voltage control of 5 Level Inverter for Static Var Compensator (자려식 SVC용 5레벨 인버터의 직류측 콘덴서 전압제어에 관한 연구)

  • 김종윤;오진석;공관식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.223-228
    • /
    • 1999
  • A five-level VSI(Voltage Source Inverter) is introduced as a SVC(Static Vu Compensator) like a large scale power source. The problems in using SVC are that the power device can easily be destroyed by voltage unbalance and accurate reactive power control is difficult because of voltage variation. A asymmetrical PAM(Pulse Amplitude Modulation) switching pattern is proposed to solve this problem and analyze both fundamental component and harmonic current in the system. Through experimental results of 3.5 kVA experimental test system, It is confirmed that DC capacitor voltage can be controlled by asymmetrical PAM switching pattern control.

  • PDF

Design of Passive Parameters for A Cascade Multilevel Inverter Based Static Var Compensator (직렬형 멀티레벨 인버터를 사용한 무효전력보상장치의 수동 파라메타 설계)

  • Min, Wan-Ki;Min, Jun-Ki;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.125-130
    • /
    • 2002
  • This paper examines the application of high voltage static var compensator(SVC) with cascade multilevel inverter which employs H~bridge inverter(HBI). The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. From the mathematical model of the system, the design procedures of the circuit parameters Land C are presented in this thesis. To meet the specific total harmonic distortion(THD) and ripple factor of the capacitor voltage, the circuit parameters Land C are designed. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

  • PDF

Development of a Control Algorithm for a Static VAR Compensator Used in Industrial Networks

  • Spasojevic, Ljubisa;Papic, Igor;Blazic, Bostjan
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.754-763
    • /
    • 2014
  • In this paper a method for the development of a static VAR compensator (SVC) control algorithm is presented. The proposed algorithm has been designed with the objective of eliminating the negative impact of electric arc furnaces on the power system. First, a mathematical model of the proposed SVC controller in the d-q synchronous rotating coordinate system is developed. An analysis under dynamic and steady state conditions is also carried out. The efficiency of the presented controller is demonstrated by means of computer simulations of an actual steel-factory network model. The major advantages of the proposed controller are better flicker compensation, increased ability to regulate voltage and the need for only one-point network measurements.

A Study on the Dominant Oscillation Mode in the Multi-Machine System Using Static Var Compensator (무효 전력 보상장치를 이용한 다기 계통의 주요 진동 모드에 관한 연구)

  • Kwon, S.H.;Chang, B.H.;Rho, K.M.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.804-807
    • /
    • 1996
  • This paper addresses the small-signal stability and control problems associated with a Static Var Compensator and its power system stabilizer. The major emphasis is on determination of suitable location for SVC arid stabilizer signal tuning through eigenvalues and frequency response techniques. To determinate of suitable location for SVC, this paper used transfer function residues. Adequate oscillation damping is achieved by the use of stabilizing signals, designed through frequency response techniques and added to SVC. The study system is Benchmark System.

  • PDF

Control of Static Var Compensator Using A Cascade Typed Multilevel Voltage Source Inverter (멀티레벨 직렬 전압형 인버터를 이용한 무효전력보상기(SVC)의 제어)

  • Min, Wan-Ki;Park, Yong-Bae;Kim, Yeong-Han;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.332-335
    • /
    • 1996
  • Multilevel voltage source inverters are emerging as a new breed of power inverter options for high power applications. This paper presents a cascade typed multilevel voltage source inverter which has separate de sources for high voltage. This inverter is proposed for flexible ac transmission systems (FACTS) including static var compensator(SVC), series compensation and phase shifting. It can solve the problems of conventional transformer-based multipulse inverters and the problems of multilevel diode-clamped inverters. To show the superiority of multilevel cascaded inverter, simulation results are discussed in detail.

  • PDF

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

Instantaneous Active/Reactive Power Compensation of Distribution Static Compensator using State Observer (배전용 정지형 보상기의 상태관측기를 이용한 순시 유효/무효전력 보상)

  • Kim, Hyeong-Su;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1377-1382
    • /
    • 2008
  • DSTATCOM(distribution static compensator) is one of the custom power devices, and protects a distribution line from unbalanced and harmonic current caused by non-linear and unbalanced loads. Researches about DSTATCOM are mainly divided two parts, one is the calculation of compensation current and the other part is the current control. Conventional researches use a LPF(low pass filter) to eliminate ripple component at the calculation of compensation current. But this method has a problem that LPF's characteristics restrict the compensation performance of instantaneous active and reactive power. This paper proposes a calculation of compensation current using state observer that can be a counterproposal of conventional methods using LPF. Improved performance of instantaneous active and reactive power compensation was shown by experiments.

Design of Robust Current Controller Using GA for Three Level 24-Pulse VSC Based STATCOM

  • Janaki, M.;Thirumalaivasan, R.;Prabhu, Nagesh
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.375-380
    • /
    • 2011
  • A STATic synchronous COMpensator (STATCOM) is a shunt connected voltage source converter (VSC) based FACTS controller using Gate Turn Off (GTO) power semiconductor devices employed for reactive power control. The operation principal is similar to that of a synchronous condenser. A typical application of a STATCOM is voltage regulation at the midpoint of a long transmission line for the enhancement of power transfer capability and/or reactive power control at the load centre. This paper presents the modeling of STATCOM with twenty four pulse three level VSC and Type-1 controller to regulate the reactive current or the bus voltage. The performance is evaluated by transient simulation. It is observed that, the STATCOM shows excellent transient response to step change in the reactive current reference. While the eigenvalue analysis is based on D-Q model, the transient simulation is based on both D-Q and 3 phase models of STATCOM (which considers switching action of VSC).