• Title/Summary/Keyword: static bending

Search Result 589, Processing Time 0.031 seconds

The Strength Analysis of Gears on Hydro-Mechanical Continuously Variable Transmission for Forklift (지게차용 기계유압식 무단변속기의 기어류에 대한 강도해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Choi, Sung Kwang
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2016
  • The power train of a hydro-mechanical, continuously variable transmission for forklifts makes use of hydro-static units, hydraulic multi-wet disc brakes & clutches, and complex helical & planetary gears. The complex helical & planetary gears are very important parts of the transmission because of a strength problem. In the present study, we calculated the specifications of the complex helical & planetary gear train, and analyzed the gear bending and compressive stresses of the gears. It is necessary to analyze the gear bending and compressive stresses thoroughly for optimal design of the complex helical & planetary gears with respect to cost and reliability. In this paper, we analyze the actual gear bending and compressive stresses of complex helical & planetary gears using the Lewes & Hertz equation, and we also verify the calculated specifications of the complex helical & planetary gears by evaluating the results of the data of allowable bending and compressive stress using the Stress vrs Number of Cycles curves of gears.

Experimental Study on Static Behavior of Laterally Strengthened Spliced Prestressed Concrete Girder using Bending Moment Connector (휨연결재에 의해 횡방향으로 보강된 분절 프리스트레스트 거더의 정적거동에 관한 실험적 연구)

  • Kim, Jae Heung;Kim, Jang-Ho Jay;Kim, Sung Bae;Yi, Na Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • The main purpose of this study is to investigate the static behavior of spliced prestressed concrete girder with bending moment connector and lateral prestressing. Four (4) spliced girders and one (1) monolithic girder had been fabricated and tested to compare their static behaviors. Same geometry and materials are used to fabricate these spliced and monolithic girders. A monolithic girder and one (1) spliced girder without lateral bending connector are used as control specimens to estimate the performance of three (3) spliced girders with lateral bending connector. Deflections at the middle of girders have been measured for evaluation. Also, strains of the concrete at the middle of span and connection points have been measured. It was found from the result that laterally strengthened spliced girders showed improved ultimate strength but less stiffness compared to the monolithic girder at the ultimate state. Laterally strengthened spliced girder also showed improved strength as well as improved stiffness compared to the spliced girder without lateral strengthening.

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Analytical solutions for static bending of edge cracked micro beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.579-599
    • /
    • 2016
  • In this study, static bending of edge cracked micro beams is studied analytically under uniformly distributed transverse loading based on modified couple stress theory. The cracked beam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-beams connected through a massless elastic rotational spring. The deflection curve expressions of the edge cracked microbeam segments separated by the rotational spring are determined by the Integration method. The elastic curve functions of the edge cracked micro beams are obtained in explicit form for cantilever and simply supported beams. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the elastic deflections of the edge cracked micro beams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and some typical boundary conditions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked microbeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Static and Dynamic Analyses of Bending Problems Using 3-Dimensional 10-Node Equivalent Element (3차원 10절점-상당요소에 의한 굽힘문제의 정적.동적해석)

  • 권영두;윤태혁
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.117-130
    • /
    • 1997
  • In this paper, a modified 10-node equivalent solid element(MQM10 element), which has smallest degrees of freedom among 3-dimensional solid elements accounting bending deformation as well as extensional and shear deformations of isotropic plates, is proposed. The proposed MQM10 element exhibits stiffer bending stiffness due to the reduction of degrees of freedom from 20-node element or Q11 element. As an effective way to correct the relative stiffness stiffening phenomenon, the modification equation of Gauss sampling points is proposed. The quantity of modification is a function of Poisson's ratio. The effectiveness of MQM10 element is tested by applying it to several examples. It is noted that the results of static and free vibration analysis of isotropic plates using MQM10 elements show a good agreement with those using 20-node element.

  • PDF

Effect of Design Shape on Fatigue Life of Plug Welded Joint (플러그 용접이음부의 피로수명에 미치는 설계형상의 영향)

  • 임재규;이중삼;서도원
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.29-35
    • /
    • 1999
  • This study was intended to use for the fatigue test in real structures and offer basic data for optimum welding structure design. To this purpose, we obserded the effect of the size and distance of plug welding hole on the static strength and fatigue life of welding structure under the shear/bending load for the improvement of fatigue life of plug welding joint between S/MBR and C/MBR in the lower structure of large bus. The result below is shown through this study. 1) Static and fatigue strength are strongly influenced by the direction of plug weld hole distributed. 2) Distances and diameters of the distributed holes are little dependent on the static strengths 3) In case of the directions of the distributed plug weld holes are vertical to the loading pin, fatigue life is dependent on distance of the distributed hole. 4) In case of the directions of the distributed plug weld holes are parallel to the loading pin, fatigue life is dependent on distance of the hole diameter.

  • PDF

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.

Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities

  • Bensaid, Ismail;Guenanou, Ahmed
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.45-63
    • /
    • 2017
  • In this article, static deflection and buckling of functionally graded (FG) nanoscale beams made of porous material are carried out based on the nonlocal Timoshenko beam model which captures the small scale influences. The exact position of neutral axis is fixed, to eliminate the stretching and bending coupling due to the unsymmetrical material change along the FG nanobeams thickness. The material properties of FG beam are graded through the thickness on the basis of the power-law form, which is modified to approximate the material properties with two models of porosity phases. By employing Hamilton's principle, the nonlocal governing equations of FG nanobeams are obtained and solved analytically for simply-supported boundary conditions via the Navier-type procedure. Numerical results for deflection and buckling of FG nanoscale beams are presented and validated with those existing in the literature. The influences of small scale parameter, power law index, porosity distribution and slenderness ratio on the static and stability responses of the FG nanobeams are all explored.

Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia Kazinoki Sieb. - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Kim, Jae-Min;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.398-405
    • /
    • 2011
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for woodceramics made by different phenol resin impregnation ratios (40, 50, 60, 70%) for Broussonetia Kazinoki Sieb. Dynamic modulus of elasticity increased with increasing resin impregnation ratios. There was a close relationship between dynamic modulus of elasticity and static bending modulus of elasticity and between dynamic modulus of elasticity and MOR and between static bending modulus of elasticity and MOR. Therefore, the dynamic modulus of elasticity using resonance frequency mode is useful as a nondestructive evaluation method for predicting the MOR of woodceramics made by different impregnation ratios.

Static bending and free vibration of FGM beam using an exponential shear deformation theory

  • Hadji, L.;Khelifa, Z.;Daouadji, T.H.;Bedia, E.A.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.99-114
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.