• Title/Summary/Keyword: static approach

Search Result 922, Processing Time 0.028 seconds

A Dynamic Programming Approach for Emergency Vehicle Dispatching Problems

  • Choi, Jae Young;Kim, Heung-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.91-100
    • /
    • 2016
  • In this research, emergency vehicle dispatching problems faced with in the wake of massive natural disasters are considered. Here, the emergency vehicle dispatching problems can be regarded as a single machine stochastic scheduling problems, where the processing times are independently and identically distributed random variables, are considered. The objective of minimizing the expected number of tardy jobs, with distinct job due dates that are independently and arbitrarily distributed random variables, is dealt with. For these problems, optimal static-list policies can be found by solving corresponding assignment problems. However, for the special cases where due dates are exponentially distributed random variables, using a proposed dynamic programming approach is found to be relatively faster than solving the corresponding assignment problems. This so-called Pivot Dynamic Programming approach exploits necessary optimality conditions derived for ordering the jobs partially.

Fuzzy Linguistic Variable Based Approach for Safety Assessment of Human Body in ELF Electromagnetic Field Considering Power System States (계통상태를 고려한 ELF 전자계의 인체안전평가를 위한 퍼지언어변수 접근법)

  • 김상철;김두현;고은영
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.70-79
    • /
    • 1997
  • This paper presents a study on the fuzzy linguistic variable based approach for safety assessment of human body in ELF electromagnetic field considering power system states. To cope with the demand in modern industry, the power system becomes larger in scale, higher in voltage. The advent of high voltage system has increased the relative importance of field effects. The analysis of ELF electromagnetic field based on Quasi-Static Method is introduced while the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes. In order to analyze the power system, Monte Carlo simulation method and contingency analysis method are adopted in normal state and alert state, respectively. In the safety assessment of human body, the approach based on fuzzy linguistic variable is employed to overcome the shortcomings resulting from a crisp set concept. The suggested scheme is applied to a sample system(modified IEEE 14 bus system) to validate the usefulness.

  • PDF

EIT Image Reconstruction using Genetic Algorithm

  • Kim, Ho-Chan;Moon, Dong-Chun;Kim, Min-Chan;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.4-60
    • /
    • 2001
  • Electrical impedance tomograpy (EIT) determines the resistivity distribution inside an inhomogeneous target by means of voltage and current measurements conducted at the target boundary. In this paper, a genetic algorithm (GA) approach is proposed for the solution of the EIT image reconstruction. Results of numerical experiments of EIT solved by the GA approach are presented and compared to that obtained by the modified Newton-Raphson method. The GA approach is relatively expensive in terms of computing time and resources, and at present this limits the applicability of GA to the field of static imaging. However, the continuous and rapid growth of computing resources makes the development of real-time dynamic imaging applications based on GA´s conceivable in the near future.

  • PDF

The Analysis of Draw-bead Process According to the Effect of the Drawbead Shape by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 드로우비드 형상에 따른 비드공정 해석)

  • 정동원
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.275-281
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critial Problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

The Effect of Key Point Control Handling for One-leg Standing Postural Adaptation in Hemiplegia (주 조절점 핸들링이 편마비 환자의 한발서기 자세적응에 미치는 영향 - 보바스의 신경발달치료 중심 -)

  • Kim, Dae-Young
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.1059-1064
    • /
    • 2001
  • This study is aimed at diagnosing transmutation aspect with the respective of hemiplegia patient's static adaptation of posture which is influenced by anti-gravity excercise, center of gravity shifting movement and segmental movement adaption of the legs and arms by key-point control in the process of Bobatli's treatment approach. The patients for the investigation of this study were selected as a total 17 patients who were doing the physical-therapy in Tae-gu Rehabilitation Center, and diagnosed as hemiplegia patients by Rehabilitation Medicine department in Kyung-buk University hospital. And also, there investigated into temporal transition that keep the attitude with one-leg standing on the ground concerning static attitude adaption on the basis of the before of anti-gravity movement and the after of 4-weeks movement. The findings of this study were as follows: With the respective the time to keep standing pose by one-leg at static attitude transmutation, affected side showed meaningful differences as a l.86/sec, 2.62/sec at 4 weeks later considering the before and after of this experiment.(p<0.01), non-affected side at the aspect of attitude keeping time, but there didn't showed meaningful differences statistically.

  • PDF

Large deflection analysis of orthotropic, elliptic membranes

  • Chucheepsakul, Somchai;Kaewunruen, Sakdirat;Suwanarat, Apiwat
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.625-638
    • /
    • 2009
  • Applications of membrane mechanisms are widely found in nano-devices and nano-sensor technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic membranes - subject to gravitational, uniform pressures often found in nano-sensors - is described in this paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic, while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to inplane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-Ritz method can be used successfully to minimize the resulting total potential energy generated. The set of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified by making numerical comparisons with existing results of circular membranes as well as finite element solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions and deformations of the orthotropic, elliptic membranes.

Fine Grain Real-Time Code Scheduling Using an Adaptive Genetic Algorithm (적합 유전자 알고리즘을 이용한 실시간 코드 스케쥴링)

  • Chung, Tai-Myoung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1481-1494
    • /
    • 1997
  • In hard real-time systems, a timing fault may yield catastrophic results. Dynamic scheduling provides the flexibility to compensate for unexpected events at runtime; however, scheduling overhead at runtime is relatively large, constraining both the accuracy of the timing and the complexity of the scheduling analysis. In contrast, static scheduling need not have any runtime overhead. Thus, it has the potential to guarantee the precise time at which each instruction implementing a control action will execute. This paper presents a new approach to the problem of analyzing high-level language code, augmented by arbitrary before and after timing constraints, to provide a valid static schedule. Our technique is based on instruction-level complier code scheduling and timing analysis, and can ensure the timing of control operations to within a single instruction clock cycle. Because the search space for a valid static schedule is very large, a novel adaptive genetic search algorithm was developed.

  • PDF

Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans

  • Uematsu, Yasushi;Sone, Takayuki;Yamada, Motohiko;Hongo, Takeshi
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.543-562
    • /
    • 2002
  • The main purpose of this study is to discuss the design wind loads for the structural frames of single-layer latticed domes with long spans. First, wind pressures are measured simultaneously at many points on dome models in a wind tunnel. Then, the dynamic response of several models is analyzed in the time domain, using the pressure data obtained from the wind tunnel experiment. The nodal displacements and the resultant member stresses are computed at each time step. The results indicate that the dome's dynamic response is generally dominated by such vibration modes that contribute to the static response significantly. Furthermore, the dynamic response is found to be almost quasi-static. Then, a series of quasi-static analyses, in which the inertia and damping terms are neglected, is made for a wide range of the dome's geometry. Based on the results, a discussion is made of the design wind load. It is found that a gust effect factor approach can be used for the load estimation. Finally, an empirical formula for the gust effect factor and a simple model of the pressure coefficient distribution are provided.

The study on the Characteristics of Ultimate Bearing Capacity and Major Design Parameters for Single Stone Column (단일 쇄석다짐말뚝의 지지력 특성과 주요 설계 파라미터에 관한 고찰)

  • Chun, Byung-Sik;Kim, Won-Cheul;Jo, Yang-Woon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.552-560
    • /
    • 2004
  • Stone column is a soil improvement method and can be applicable for loose sand or weak cohesive soil. Since the lack of sand in Korea, stone column seems one of the most adaptable approach for poor ground as a soil improvement method. However, this method was not studied for practical application. In this paper, the most effective design parameters for the being capacity of stone column were studied. The parametric study of major design factors for single stone column was carried out under the bulging and general shear failure condition, respectively. Especially, a test result of single stone column by static load was compared with the bearing capacity values of suggested formulas. The analysis result showed that the ultimate bearing capacity by the formula was much less than the measured value by the static load test. Especially, the result of the parametric study under general shear failure condition showed that the bearing capacity has apparent difference between each suggested formulas with the variation of the major design parameters. Therefore, the result of this study can be a suggestion which is applicable for the field test and the future research.

  • PDF

Classification of Acoustic Emission Signals from Fatigue Crack Propagation in 2024 and 5052 Aluminum Alloys

  • Nam, Ki-Woo;Moon, Chang-Kwon
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.51-55
    • /
    • 2001
  • The characteristics of elastic waves emanating from crack initiation in 2024 and 5052 aluminum alloys subject to static and fatigue loading are investigated through laboratory experiments. The objective of the study is to determine difference in the properties of the signals generated from static and fatigue tests and also to examine if the sources of the waves could be identified from the temporal and spectral characteristics of the acoustic emission (AE) waveforms. The signals are recoded using non-resonant, flat, broadband transducers attached to the surface of the alloy specimens. The time dependence and power spectra of the signals recorded during the tests were examined and classified according to their special features. Three distinct types of signals were observed. The waveforms and their power spectra were found to be dependent on the material and the type of fracture associated with the signals. Analysis of the waveforms indicated that some signals could be attributed to plastic deformation associated with static tests. The potential application of the approach in health monitoring of aging aircraft structures using a network of surface mounted broadband sensors is discussed.

  • PDF