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Fine Grain Real-Time Code Scheduling Using an
Adaptive Genetic Algorithm

Tai-Myoung Chung'

ABSTRACT

In hard rcal-time systems, a timing fault may yield catastrophic results. Dynamic scheduling provides the flexi-
bility to compensate for uncxpected events at runtime; however, scheduling overhead at runtime is relatively
large, constraining both the accuracy of the timing and the complexity of the scheduling analysis. In contrast,
static scheduling need not have any runtime overhead. Thus, it has the potential to guarantee the precise time at
which each instruction implementing a control action will execute.

This paper presents a new approach to the problem of analyzing high-level language code, augmented by arbi-
trary before and after timing constraints, to provide a valid static schedule. Our technique is based on instruc-
tion-level compiler code scheduling and timing analysis, and can ensure the timing of control operations to
within a single instruction clock cycle. Because the search space for a valid static schedule is very large, a novel

adaptive genetic search algorithm was developed.

1. Introduction of timing faults. Clearly, either a flaw in the control
program’s logic or untimely control action at runtime

For a real-time system to function correctly, the may cause inappropriate system behavior, resulting in
controlling software must be logically correct and free equally severe consequences. A system in which minor

timing errors can be tolerated is called a soft real-time

1328 94922 08 ARty 24 system;a hard real-time system can fail catastrophic-

EEAF1979 19 279, AALgE 19979 59 159 ally if even a single operation is performed at the
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wrong time. Figure 1 depicts the profit functions of
soft and hard real-time systems where a negative pro-
fit indicates the penalty. While the profit is slowly de-
graded when a job is not done within the required
time range in soft real-time systems, the penalty is not
tolerable in hard real-time systems for even a small
timing error. The penalty might be the destruction of
the real-time environment and even loss of lives.
Given that we are concerned primarily with hard real-
time control, it is critical that the programming sys-
tem be able to ensure that all timing constraints will
be met no matter what events occur at runtime.
Examples of hard real-time systems are command and
control systems, flight control systems, and space

shuttle avionics systems [1, 5].

Penalty : H Penalty | )
+ + bd &)
Time
0 0
- b - B

b=

f(x) : Profit function of a soft real-time system
g(x) : Profit function of a hard real-time system

(Fig. 1) Profit functions of soft and hard real-time systems.

In order to meet timing constraints, control oper-
ations are scheduled at either runtime or compile
time, called dynamic or static scheduling respectively
[18]. Dynamic scheduling provides flexibility in that
the system can adjust its schedule for unpredicted
events, but runtime overhead limits the precision of
operation timing. This overhead limits dynamic sche-
duling to relatively coarse grain tasks. The impre-
cision of dynamic scheduling for a safety critical hard
real-time system is potentially dangerous [5). In con-
trast, even though static scheduling requires prior
knowledge of the timing properties, statically schedu-
ling individual operations (i.e., instruction-level code

scheduling) requires no runtime overhead, making it

possible to ensure operation timing be accurate to
within a single tick of the system’s clock.

In safety critical systems, because high precision op-
eration timing is generally necessary, the flexibility of
dynamic scheduling should be sacrificed for safety [1].
For example, an emergency brake control process of
an automobile should activate an anu-skid function
and inflate air-bags in a timely manner; thus, it is im-
portant for high precision control operations to be
executed accurately. However, such detailed static
analysis is not easily achieved, and a variety of mod-
ern computer features can blur timing properties (e.g.,
cache misses, dynamic RAM refresh cycles) over a
small range of clock ticks. Static scheduling requires
predictable behavior of the hardware systems to sup-
port accurate operation level timing analysis.

Instruction scheduling with precedence constraints
is NP-hard [10]. Clearly, addition of timing constra-
ints does not simplify the problem, and performing
the analysis at the level of individual instructions
means that problem size is typically large. Complexity
can be reduced by allowing only a restricted class of
timing constraints [18], but such restrictions would
make the technique impractical for some real-time
control systems [6]. To handle arbitrary hard real-time
control problems, our analysis must understand fully
general timing constraints.

One might hope to build an appropriate analysis
and scheduling technique from existing methods, but
none of them effectively handles both before and after
constraints between arbitrary instructions in our com-
putational model. The most common scheduling algor-
ithms are priority based:Rate Monotonic Algorithm
(RMA) [16], Earliest Deadline First(EDF) [2], etc.
However, even with a variety of exténsions [4]{19], a
model with arbitrary after timing constraints is not
still supported. To our best knowledge, only [11] has
a similar view of the scheduling problem and partially
solves it by enhancing the schedulability using a struc-
tural code motion technique.

In this research, we treat the problem of finding a



valid schedule as a multidimensional search problem
(3] for which many approaches are proposed to solve.
Gradient ascent tends to find only locally optimal
solutions [12]. Simulated annealing is less likely to miss
the globally optimal solution because the range of
alternatives that it considers narrows only as it nears
the solution, but it is very difficult to determine an
appropriate formula by which the search should be
narrowed [13, 15]. We have found that a genetic
search [14], which is based on the darwinian theory of
evolution is effective in finding a globally optimal sol-
ution, ie., a code sequence that satisfies all timing
constraints.

Even though the genetic algorithms applied to those
applications show potential for the complex problems,
the stochastic behavior makes the algorithm inef-
ficient because the search relies too much on random
behavior. Hence, in this paper, we propose an adapt-
ive genetic search technique to find a valid schedule
more efficiently and more reliably. Adaptive genetic
approach implies that the search relies on not only
stochastic behavior of the algorithm, but also on
deterministic behavior based on program structure.

In Section 2, the timing constraint model with arbi-
trary before and gfter timing constraints is defined,
and some notations are introduced. The basic oper-
ations and algorithms of adaptive genetic search are
described in Section 3 with theoretical analysis. Then,
the experimental results are illustrated and analyzed
in Section 4. Finally, the conclusion is derived in Sec-
tion 5 along with current research progress and poss-
ible future work.

2. Timing Constraint Model

Consider the trivial control program fragment shown
in Figure 2. As written, this code would fail to meet
the timing constraints specified in the comments. If
we assume that each instruction takes 1 us to execute,
two of the three timing constraints are violated. First,

the order of the two actuators being triggered is in-
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correct; 73 executes 3 us before #s. Second, #; reads

the second sensor’s value 1 us too late.

y1: Load rl, sensorl ; Get value from memory-
mapped sensor 1

r2: Store act; , r1 ; Send value in rl to actuator 1

v3: Load r2, sensor2 ; Get value from memory-
mapped sensor 2

ye: Add 13, 1], 12 ; Add the sensor inputs

vs5 ! Store actz , r3 ; Send result in r3 to actuator 2
61 71 must execute no later than 1 us after 73

02 72 must execute at least 1 us after rs

63 7r3 must execute no later than 1 us after 7,

(Fig. 2) An invalid schedule in a real-time program

In this case, it is possible to reschedule the operat-
ions so that all timing constraints are met and corre-
ctness of the dependences within the control algorithm
are preserved. However, finding a valid sequential or-
der for » instructions involves a search of n! complete
schedules - which is very difficult for large 7. For the
code in Figure 2, we would have to find one of the
120 possible schedules that satisfy all constraints

(either 2., 73, 14, is, 12 OT 23, i1, 44, &5, 2).

Definition:1 / is defined as a set of instructions to be
scheduled, i.e., I={1,, i3, 73, ..., 2.} Where ixE 1 is ks

instruction in the original sequence of n instructions.

Definition:2 C is defined as a set of timing constra-
ints associated with the instructions, i.e., C={cy, ¢z,
Ci, ..., Cm} where m is the number of constraints in
the problem. Each component ¢; is a tuple denoted as
ce={1s, i, n, 6) where i and 7, are the end-point
instructions (source and sink), # implies a timing rela-
tion between 7 and 7., and & is the offset associated
with 2.

In this model, any timing relations can be expressed
as one of the following standard forms which are also
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used to express the precedence constraints. For ex-
ample, a precedence constraint “x uses y's result” is
converted into a timing constraint “(b, e, after, (1)

that is a standard form of after constraint!.

1. before constraint :7,<7, +6 (75 must happen at la-
test & after z.)

2. after constraint:,>1, +6 (i, must happen at ear-
liest & after 7,)

3. concurrent constraint:Z,=7, +8 (7 must happen ex-
actly at & after 7.)

4. exclusive constraint:i; # 7, +8 ({, must NOT hap-

pen at § after Z,)

This conversion makes our scheduling analysis much
simpler by encoding ordering constraints in terms of
the timing relationships, and by taking into account
only those forms of timing constraints. Figure 3 de-
picts the semantics of the standard forms of the timing

constraints.

Yo Yo +3 Yo Th+3
—t—] I —
| AN A — | —

Yo < Y%+3 Yo > Yo +3
¥y Yo +3 Yy Yo*+5
8] C————————t——
'Y. - Yb +3 ‘!o - Yb +3

(Fig. 3) Ranges of i» to satisfy timing constraints

Definition:3 A schedule s is defined as an execution

sequence of the instructions in 7;

L€, SE=1p0) k) Lr(3) .- Taew Where fpmFingy if x#Y,
and ;€1 iff i;Es;.

Because there are # instructions and each can logi-
cally be placed in any position in the sequence, there

are n! schedules in the search space U. Of these, only

schedules satisfying all constraints (i.e., S={sp|s: €U
and V7, ¢;€C holds for sz}) are valid solutions to
the hard real-time control problem.

3. Scheduling Algorithm

Because the search space is large and has a complex
structure, finding a solution by genetic search is ap-
propriate. However, mapping the problem of creating
a valid schedule into a genetic search is not straight-
forward. First, our genetic search requires the defi-

nition of :

e An evaluation function that measures how close
to valid a particular schedule is.

* A set of basic genetic operations by which each
new “generation” of schedules to be considered
can be derived from the current population of

schedules.

3.1 Evaluation function

Given a schedule s; and a function t which returns
the time taken to execute a given instruction, the ex-
ecution time for the block between Yy and Vi) in-
clusive; denoted as T(sk, x, ¥), is calculated as:

T(st, x, y)=}il (Vi)

where ¥ and y are the x; and yu instructions resp-

ectively.

We use this time estimate to determine which timing
constraints have been violated ; the absolute execution
times for the schedule is irrelevant. The quality of a
schedule is measured by a penalty function, F(sz, ®),
which counts the number of timing constraints from
the set @ that are violated by schedule si. i.e. F(s,
@) = w, where w; indicates the number of constraints
that would cause timing faults when s is executed. We

! For serial machines, concurrent constraints are unsatisfiable and exclusive constraints are tirvially met.



assume that all needed resources are available (e.g.,
register allocation is performed separately). That is,
when @ | =m, the range of w is 0<w<mand wEN.
That is, ws=0 is a necessary condition for s to be a
valid schedule. We define the penalty function with

unlimited resources as
Fs,8)=Y f(s,6))
j=t

where
1 if 8; does not hold
f(s, 6) = ’

0 otherwise

3.2 Basic operation

Our search technique combines three basic types of
operations for creating a new population of schedules
:naive genetic operations, adaptive mechanisms, and

reconcilement techniques.

3.2.1 Genetic operations

Natural selection Natural selection stochastically
prefers to construct the next generation from the
most fit individuals in the current generation. Like-
wise, our algorithm prefers to preserve schedules that
may be close to a valid solution. This is approximated
by maintaining some schedules which have relatively
low adjusted penalty values from each generation to
the next. The adjustment is performed by adding a
small stochastic bias to better model the natural pro-

Cess.

Crossover While natural selection preserves quality, it
does not enhance quality. Crossover is the process of
creating new schedules by mating portions of existing
schedules. In the process of mating, some schedules
generated in this way will combine the good features
of both parents, thus surpassing either parent. For
each new schedule to be created in this way, two re-
latively fit schedules are selected from the current
population. The “mating” operation is then performed
by initially copying one parent schedule and then re-
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placing a subset of ils instructions with the cor-
responding subset from the other parent. The compli-
cation is that the new schedule must be a member of
the search space U. The following scheme ensures
that it is in U.

At the first step, we select a single instruction #u)
in a copy of the parent schedule s, that is an end-
point of a violated constraint to increase the proba-
bility of improving upon the parent. Then, the corre-
sponding instruction Zy from the other parent sched-
ule s, is substituted for £y . If the resulting schedule
is in U (i.e., has no duplicate instructions), the pro-
cess is complete. Otherwise, the instruction #4y is
located within s,, and this exchange process is re-
peated until the resulting schedule is in U. Figure 4
illustrates how this crossover process would proceed
given the initial choice of exchanging ix2. The order

of exchange is 74, %o, f4, %5, Is.

s [T 1]

L' Initial starting spot= 2

(Fig. 4) Crossover operator applied to pair of schedules

Mutation The problem with the combination of nat-
ural selection and crossover is that both tend to re-
duce genetic variation, which could focus the search
on a portion of U that might not contain any solut-
ions. Adding small random perturbations, or muta-
tions, to some schedules prevents this behavior by ex-
changing the instructions at two randomly selected
positions within a schedule. Much like our biasing of
the crossover process, one of the selected positions is

always an instruction that violates a timing con-
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straint.

While conventional mutation increases the variation
to the schedules by simply exchanging two random
instructions in a schedule, our mutation purposely
have one of the exchanged instructions in the parent
to be the one causing a timing fault. This modifi-
cation is applied because mutating the selected in-
struction probablistically improves the schedule better
than mutating the random instruction by moving one
of the violated timing constraint. An example is given

in Figure 5.

pol o fedefe o el e 0]

S Ranaannnnn

(Fig. 5) Mutation operator applied to a schedule

Rotation Although mutation is effective, the number
of mutation operations required to “shift” a portion of
the schedule is very large. Thus, rotation is an alter-
native form of mutation that essentially mutates a sch-

edule in a different dimension. By this operation, the

A nnnnnnnnnn

Downward Rotation

(Fig. 6) Rotation operators applied to a schedule

entire subsequence of the schedule between the two

selected instructions is rotated as shown in Figure 6.

3.2.2 Adéptive mechanisms

In addition to the (somewhat unusual versions of)
standard genetic operations outlined above, the hard
real-time scheduling problem has special properties
that can greatly improve the success rate. One pro-
perty of this problem is that, although the fully gen-
eral problem proposed here cannot be efficiently
solved, versions of the same problem with simpler
constraints can be solved efficiently. The other pro-
perty is that, in most cases, if only a few constraints
are violated, it is common that a solution can be
found by permuting only the instructions involved in
the violated constraints.

Position pruning Although verifying timing constraints

requires that the complete schedule be evaluated, it is
inexpensive to determine that many potential instruc-
tion placements are invalid. This is done by reducing
the timing constraints to simple precedence relations,
and then translating these relations into possibly valid
ranges of schedule position§ for each instruction. Sup-
pose that the precedence information shows that i,
‘has @ ancestors and 8 descendants among # instruct-
ions. Clearly, the instruction #; must be in a schedule
position between @ —1 and #— g invalid. If 4, is placed
outside of this range, the schedule is guaranteed to be

invalid.

Instruction number
1 2 3 4 b

(Fig. 7) Search space for example 1 with pruning technique



In our algorithm, this position pruning technique is
implicitly employed to all the genetic operations ex-
cept the crossover in order to avoid the search space
not containing any valid schedule. For example, the
position where a selected instruction is placed is
chosen among the positions not pruned by this po-
sition pruning. Figure 7 shows that how much of the
search space is reduced for the instruction sequence
given in example 2 by position pruning. With a sim-
ple calculation, we find that the search space is reduced
from 120 to 2 schedules. In fact, in this particular
case, both remaining schedules are valid solutions be-
cause cach timing constraint can be accurately sim-

plified into a precedence constraint.

Insertion stretch Scheduling with only before constra-
ints, usually called “deadlines”, has been studied by
many researchers. When after constraints are added,
the problem becomes much more complex due to
interactions between before and after constraints. For
example, a code reorganization to satisfy a before
constraint may destroy a previously satisfied after
constraint, and vice versa.

However, there are often independent instructions
within the schedule:instructions that can be freely
moved without affecting other constraints. Insertion
stretch simply moves these instructions to just before
each instruction that fails an gfter constraint. A simi-
lar code motion has been used in [11] to satisfy before

constraints.

Exhaustive search Exhaustive search always yields an
optimal solution, but the computational complexity
explodes as the schedule length increases. However, if
the only invalid timing constraints occur within a
short sequence of instructions that do not impact any
timing constraints outside this sequence, exhaustive
search within that sequence may be an effective method
for finding a solution.

Naive exhaustive search requires O(n!) time com-

plexity to evaluate all possible schedules. For ex-
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ample, a 15 instruction sequence could require testing
all 15! or 2,004,310,016 schedules. However, using an
exhaustive search modified by pruning techniques
(based on the technique used by [17] to schedule instr-
uctions for multiple-pipeline processors), scheduling
15-instruction sequences is practical. Thus, this techn-
ique is applied whenever the sequence size drops be-

low 16 instructions.

3.2.3 Reconcilement techniques

Adaptive genetic search is most effective when the
search is a mix of stochastic and deterministic be-
havior, balancing ability to refocus the search with ef-
ficiency in searching within the current focus. Recon-
cilement techniques attempt to maintain this balance.
Too much determinism is prevented by perturbation;
too much randomness is avoided by discrimination.

Perturbation In the genetic algorithm, one of most
critical performance improvements is to avoid repet-
itive generation and evaluation because it is quite
possible that the random behavior of the algorithm
repeatedly produces the same schedules. The adaptive
mechanisms also may lead the search toward the
same space. Thus, it is necessary to detect and elimin-
ate repeated schedules.

Perfectly detecting repeat schedules would require a
time complexity of O((n—1)!) at each generation. In-
stead, we use a novel algorithm to identify repeated
schedules by exploiting a hashing technique and
prime number multiplication. In this technique, the
hash index of a schedule is obtained by summing the
results of the muitiplication of the instruction id by
the corresponding prime number, ¢. Namely, the
hashing index for si can be computed as:

H(s)= ¥ 0 ()xin

=1

where ®(5) is jin prime number and 7y is the instruc-

tion identifier for 7 instruction in s; as an integer.
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By this algorithm, hash indices are rarely equiva-
lent unless the schedules are identical. If the hashing
entry for the index already exists, the schedule is
perturbed®. The hashing index calculation does not
have to be done separately because the calculation
can be a part of the evaluation process.

When a schedule consists of large number of instr-
uctions, the schedules can be simply partitioned into
subschedules and individually compared to reduce
both space and time complexity. Let s, and s, are
partitioned into 55, S5, -, S55, and S;', S, -+, S* re-
spectively. Then, s, is perturbed when H(sp)= H(sy)
implying that (s,' = s, )N (s, = $,)N -+ N (55" =55°).

Discrimination If 2 high penalty is associated with a
schedule, this suggests that the search space has be-
come too random, and the schedule may not be in the
right direction. In this case, the discriminating de-
cision is made by the algorithm to reduce the ran-
domness. When a schedule associated with high pen-
alty is generated by one of the operations, the algor-
ithm simply discards the schedule and adopts the
parent schedule instead.

In this paper, we propose a more sophisticated de-
tection mechanism to find the schedules to be discard-
ed based on the concept of simple constraints. The
simple constraints have the offset value of zero,
equivalent to the precedence constraints. Indeed, the
simple constraints are an improper superset of the
originally supplied precedence constraints. When a
schedule generated by a basic operation has a certain
number of violated simple constraints, say o, the dis-
crimination determines to discard the schedule. The
value of ¢ should be tuned for optimal per-
formance out of discrimination operation because it
may waste the time to compute the schedule when it
eliminates right path with ¢ value fixed too low. This-

operation can be disabled when o is set to be infinite.

3.3 Algorithm description and analysis

Crossover algorithm As explained earlier, the trans-
itive closure set enforces that new schedules be in the
search space. In the crossover algorithm, Step 2
through Step 7 of the crossover algorithm compute
transitive closure sets, ¥; and 7. to exchange without
missing or duplicating any particular instructions. It
is achieved by transitively finding the union set of
instructions in corresponding positions of s, and ;.

The modification of traditional crossover algorithm
is made in Step 2 to favor deterministic behavior by
selecting ixy such that the instruction is either (&%)
or i{Z). ¢ denotes one of the constraints that would
be violated. From the second iteration, Zyy is the one
identical to iy in the previous iteration as appeared
in Step 6.

The @ operator in Step 8 inserts 7 into the cor-
responding positions of 7; in 5. In fact, the positions
of the instruction in 7, and ¥, are identical.

Crossover Algorithm

Input: Sp = lposlpc1rlptnyy, Sq = lqolet1 iatnm
and C = {ov. o, = . )

Output: S5 = lawopgr)iptn)

Procedure: '

.Step 1t initialize transitive closure sets:
Yo=0, 71 =

Step 2: select iy from sp

Step 3 set 0= Y0 YU iuw

Step 4: set 1= 71 U law

Step 5: If (70 = 71), then goto Step 8

Step 6: x = index(iqxyx in.sp)

Step 7: goto Step 3

Step & S5 =5, D 72

Step 9 return s

Mutation and rotation algorithm The mutation algor-
ithm and rotation algorithm similarly performs in-

? There is a low probability the schedules being different, but comparing multiple schedules for the small probability make the algor-

ithm less efficient.



struction exchanges 1o pgencrate probablistically
improved schedule. The difference is that the rotation
shifts all the instructions to upward or downward
while mutation simply swap two instructions. Note
that Step 1 of both algorithms select one of the target
instructions, Zxy) in this algorithm, to be the one violat-
ing a constraint. Also, random number generator
selects the other instruction, #ux), to be in the valid
range for iy, in both mutation and rotation algor-
ithms.

The operator P used in Step 2 of mutation algor-
ithm and Step 3 of rotation algorithm is identical to
the one used in Step 8 of crossover algorithm. Hence,
the corresponding positions in s, are updated in such

way that the resulting schedule remains in search space.

Mutate Algorithm

Input? Soioiin1y*iotny and C={c1, 3, , Cm}
Output: S5 = Inoda Iain
Procedure:
Step 1: select ipx.iory) from s,
Step 2: S = So D Swaplipm,ivy)
Step 3: returmn sp
I'Jpward Rotation Algorithm
Input: So=ipiprn)iotmy and C={cy, ¢z, Cm}
Output: S5 = Inia1ripins
Procedure:
Step 1: select ipx iy from s,
Step 2: ltemp = Ip(x)
Step 3: From j = ipixen 10 iy
S5 = So D Swaplip-1ini)
Step 4: Ioty) = ftemo
Step 5 retum Sp

Main: Adaptive genetic algorithm Step 1 of the main
algorithm determines the parametric values of the al-
gorithm for more efficient execution. Because this al-
gorithm is based on random heuristics, the parametric

values obtained from the experiments make more

sense. The parameters are population size (p), number
of children by natural selection {m), by mates (k), and
by the other basic operations (p—~m=—k). In parti-
cular, the population size determines the number of
hills that are simultaneously searched. The detailed
discussion of the parametric values are given in the
next section.

In Step 2, the main algorithm generates initial po-
pulation G,. It is very important to generate G, that
contains the schedules close to the valid space because
the search starts at the initial schedules in Go and
adjusts the schedule toward the valid ones. One of the
ways creating G, is to perturbing a schedule that con-
ventional compilers produce. The schedule usuaily
satisfies all the precedence constraints Hence, Gy is
generated by perturbing the input sequence Si», pro-
duced by conventional compilation techniques. How-
ever, preserving the simple constraints, i.e. =0 while
we randomly perturb s; is costly because only the
schedules satisfying F(s, C*)=0 are selected where C*
denotes the set of simple constraints. However, G,
can be easily produced if the schedules with 4> 0 are
allowed. In fact, it not only reduces the execution
time, but also offers more randomness to the algor-
ithm.

An alternative to generate G, is applying topolog-
ical sort on S;». In the case that the topological sort
does not produce enough schedules for Go, the
schedules that have already been generated are simply
duplicated. This scheme guarantees that all the
schedules have property of F(s, C*)=0.

After the natural selection and crossover are per-
formed in Step 6 and Step 7 of the main algorithm,
the rest of the offsprings are generated by applying
one of the minor operations. In the Step 8, insertion
stretch, exhaust, rotate or mutate are selected based
on the type of constraints or length of blocks with
violated constraints. The pseudo code for stretch and
exhaust are not given because they are trivial. In Step
9, identical schedules are found by comparing hashing
index, and perturbed if they are already considered.
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This algorithm always finds a solution if it exists
and infinite generations are tried. However, the algor-
ithm can be improved by restarting the process when
it exceeds a certain number of generations called the
limit algorithm threshold. The program terminates

when one of following conditions is met.

1. When a valid schedule is found. i.e., 35 where F
(s, C)=0 (Step 4).

2. When new offsprings is not generated. i.e., Gi=
Gi +1, namely, Vs;EG;, s;€G;+ (Step 9).

3. When a valid schedule is not found after the de-
scendant threshold specified by user. ie., Vs;€
Gmax, F(s, C)<O0 (Step 9).

Among the three termination criteria, the second
and third conditions are added to the algorithm ap-
peared in the previous section for the case of the un-
successful termination. In those cases, an execution of
the algorithm is repeated because the randomized
search paths based on the time function are usually

different each time.

Step 8: Apply other operations to generate the
rest{(p-m-k)  times):
If( 7 (a)=dfter, lilc)-iblca)l< & (),
Gju1 = GjuV Stretch(cr)
else if (V&, lilc)-islc)i=¢),
Gj1 = GjuV Exhaust(is(cx), ielcx))
otherwise, Giv; = Gi.:V Mutate(s:)

Step 9 If(3s,, 3sy, sx = sy), Sy = Perturb(s,)

Step 10: If (Gi = Gur or i > algorithm threshold)
Terminate

Step 11: Setj =j + 1 and go to Step 3.

Main: Adaptive (}enetic Algorithm

Inputs: Sin® = Tin0)linc1)>" " lintny and
: C={la. o  .cnl

Outputs: Valid schedule: Sou = lousosourct)” " Louetns
or NIL if fails.

Procedure:

Step 1! Set variables —
j = current generation, p=population size
m = # of children by natural selection
k = # of children by mate

Step 2: Generate G,-=(_s;m,s,~(z),"-s;(p)) by perturbin
Sin

Step 3: V' si€Gj, compute w = F(s, O).

Step 4 If (3s:€G; such that w=0), then return s;
and terminate

Step 5: Set Giv1 = 0

Step 6: Select m best schedules from Gj, say R;.
Then, set Giy = Gt V' Rj

Step T: Apply crossover to generate k offsprings

(k times):
step 7.1! Randomly select s, sy € Gju

step 7.2: set Giv = GV Crossover(s;. s)

4. Experiments

4.1 Experimental environment

Our experiments were performed on IBM RISC
System/6000, and Sun Sparcl0 workstations. In this
section, we present the results obtained from running
the adaptive genetic algorithm on Sun Sparcl0 work-
stations, because our goal is not comparing the per-
formance of the platforms, but identifying performance
factors in the algorithm. In fact, the results from IBM
RS/6000 workstation are proportionally scaled to the
ones from Sun Sparci0Q workstations.

The algorithm is implemented in the C language
under the UNIX operating system. The grammar for
the real-time control system is parsed using PCCTS
(the Purdue Compiler Construction Tool Set) to gen-
erate an intermediate form representing an instruction
sequence and the set of constraints. Then, the algor-
ithm presented in the previous section is applied to
manipulate the intermediate form. Thus, the initial in-
put data file is generated from the real-time language
that is under development as a part of CHaRTS proj-
ect (Compiler for Hard Real-time Systems). The
CHaRTS project includes design of language con-
struct phase [7] and code scheduling phase for com-
plete compilation of real-time control programs.

4.2 Resuits and analysis
In these experiments, we focus on determining the
factors that directly influence on the compile time as



well as the success rates. That is, the measurements in
which we are interested are the search time for a valid
schedule and the success rate;hence, our results are
given in two categories. One:average search time for
30 successful executions of the algorithm. Two:suc-
cess rate that indicates how many times the algorithm
successfully terminates with a valid schedule. The
results of the success rates along with the average ex-
ecution time indicates that this algorithm has po-
tential to be employed to code scheduling for real-
time systems.

A critical performance factor is the population size
that has trade-off between execution time to generate
the next population and the probability of having
variety of sequences on the paths in a generation. If
the population size is too small, then the randomness
is drastically diminished while the execution time for
a generation to next is reduced. Hence, the first ex-
periment was focus on the performance of the algor-
ithm for different values of population size. In this
experiment, the programs consist of 64, 80, 96, 112 or
128 instructions, and population size varies from 32
to 256 schedules. At this stage, small problems are
solved quickly, but scheduling problems involving
more than 200 instructions are not yet practical. To
handle larger problems, we are developing a hier-
archical decomposition scheme.

For this experiment, we ran the algorithm until 30
executions found valid schedules when the algorithm
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threshold is set to 4,096 generations. Then, the aver-
age execution time of the successful runs was com-
puted. The results in Figure 8 shows that there exists
an optimal population size that is proportional to the
problem size. The larger population size is not always
better because the execution time for one generation
to next is greater for it while the randomness is not
much improved after a certain population size. How-
ever, the graph does not correctly reveals the success
rates obtained for the executions not finding a valid
schedule until the algorithm threshold. Indeed, the
success rates are all 1 when the population size is
greater than 64. The success rate for population size
of 32 are linearly decreased from 0.8 to 0.2 as the
number of instructions are incresed from 64 to 128.
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The initial population is another critical perfor-
mance factor. It is generated from an input sequence
that is provided by the compiler’s front-end. The pre-

"liminary implementation of CHaRTS provides the in-
put sequence which is, in turm, perturbed to generate
the initial population. Note that the initial population
is a subset of the sequences that would be generated
by topological sorts if ¢ =0. The results with different
o values are also obtained. The initial population is
manipulated by adjusting the value of o. Figure 9 il-
lustrate the resuits for different ¢ values, and it shows
that the discrimination operation is optimal when it is
in a certain range. One interesting result from this
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experiments is that if a valid schedule is not found in
small number of generations, then the probability of
find it in larger number of generations.

Further, we were interested in learning the im-
provement by the adaptive algorithm compared with
a naive genetic algorithm. Hance, an experiment was
performed to schedule instructions under the same en-
vironment for both algorithms, scheduling 64 and 80
instructions. The compared execution times of naive
genetic algorithm and adaptive genetic algorithm are
depicted in Figure 10. The result illustrates the naive
search works reasonably, but the adaptive mechan-
isms improves not only the search time but also the
success rate. It implies that the adaptive technique is
more reliable as well as more efficient than naive gen-

etic algorithm for the code scheduling problem.
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SCM ratio, based on the number of offsprings gen-
erated by natural selection, crossover, and other basic
operations, is another significant performance factor.
We varied the ratio to 1:1:2,2:1:1, 1:2:1 to see what
operations are more effectively generate offsprings
that are close to the valid space. Figure 11 depicts the
behavior of the algorithm with different SCM rato.
For this experiment, we ran the algorithm for 80
instructions with various population size. In this ex-
periment, the result shows that the SCM ratio is not a
critical factor in this algorithm, indicating that the
basic operations equally contribute to the algorithm
except the case that the number of offsprings by natu-
ral selection is too small.

5. Conclusion

In this paper, we have presented a method for stati-
cally scheduling hard real-time programs at the in-
struction level. Unique to our model is fully general
timing constraints that support timing relations be-
tween arbitrary instructions. The analysis of the
model is simplified by encoding all constraints into a
form of timing constraints, then an adaptive genetic
search technique is applied to find a valid schedule.

Realizing that this very general formulation results
in a very difficult instruction scheduling task, we have
proposed, implemented, and evaluated an adaptive
genetic search code scheduler. This scheduler is cap-
able of scheduling instruction sequences containing
over 120 instructions (or tasks) augmented by very
complex before and gfter timing constraints. How-
ever, techniques like hierarchical decomposition need
to be developed so that much larger codes can be
scheduled efficiently. Of course, using the existing
scheme to schedule instructions for soft real-time sys-
tenis would be effective for much larger programs.

This paper only focuses on code scheduling for
serial machines, but various parallel architectures can
be exploited to improve schedulability. Thus, the next
step is to develop scheduling techniques that can



make use of parallel control computers. We hope to
target static scheduling to a collection of RISC micro-
processors connected by a device with static commun-
ication timing proerties; the communication hardware
would be based on barrier synchronization, much like
PAPERS (Purdue’s Adaptor for Parallel Execution
and Rapid Synchronization) [9), which links clusters
of workstations.

It is also significant that the instruction scheduling
techniques developed here represent several significant
advances over the compiler code scheduling techno-
logy that was drawn upon for this project. Conse-
quently, the adaptive genetic search instruction sched-
uling presented here should be applicable to instruc-
tion scheduling for applications like fine-grain parallel
code scheduling (e.g., for VLIW or pipelined
computers) [8].
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