
Journal of The Korea Society of Computer and Information

Vol. 21 No. 9, pp. 91-100, September 2016

www.ksci.re.kr

http://dx.doi.org/10.9708/jksci.2016.21.9.091

A Dynamic Programming Approach for Emergency Vehicle Dispatching

Problems

1)Jae Young Choi*, Heung-Kyu Kim**

Abstract

In this research, emergency vehicle dispatching problems faced with in the wake of massive

natural disasters are considered. Here, the emergency vehicle dispatching problems can be regarded

as a single machine stochastic scheduling problems, where the processing times are independently

and identically distributed random variables, are considered. The objective of minimizing the expected

number of tardy jobs, with distinct job due dates that are independently and arbitrarily distributed

random variables, is dealt with. For these problems, optimal static-list policies can be found by

solving corresponding assignment problems. However, for the special cases where due dates are

exponentially distributed random variables, using a proposed dynamic programming approach is found

to be relatively faster than solving the corresponding assignment problems. This so-called Pivot

Dynamic Programming approach exploits necessary optimality conditions derived for ordering the jobs

partially.

▸Keyword :Emergency Vehicle Dispatching, Dynamic Programming, Stochastic Scheduling, Tardy Job

Ⅰ. Introduction

This research deals with emergency vehicle

dispatching problems faced with in the wake of massive

natural disasters. In massive disasters, the degree of

injury varies depending on the emergency situation. Some

injuries require immediate medical treatment, some need

only minor treatment. Hence, First Come First Served

(FCFS) or prioritized FCFS, which are commonly used

rules, may not be useful because there will be many

severe injuries in a short time period.

In emergency vehicle dispatching, both severity of

injuries and response times to the emergency scene must

be considered. A good emergency vehicle dispatching

policy should have the following characteristics.

The policy should be optimal or near optimal in terms

system such as the total waiting time.

Determining the order of dispatching should be fast

since it is not acceptable to lose lives because of slow

dispatching decisions, even though they are optimal.

The policy must be able to be adjusted according to

the dynamic situation of emergency and the dynamics of

situational information.

To simplify the problem, this research focuses on

single-machine cases. We envision that the area of

interest can be clustered into several clusters small

enough for a single vehicle to serving a uniquely assigned

cluster. The scheduling aspects of out research is used to

determine the order of service by the unique vehicle to

the casualties within such a cluster.

The approach to emergency vehicle dispatching in this

∙First Author: Jae Young Choi, Corresponding Author: Heung-Kyu Kim

*Jae Young Choi (mobilechoi@ajou.ac.kr), Associate Professor, Department of Software, Ajou University.

**Heung-Kyu Kim (heungkyu@dankook.ac.kr), Professor, School of Business Administration, Dankook University.

∙Received: 2016. 06. 30, Revised: 2016. 08. 10, Accepted: 2016. 08. 29.

92 Journal of The Korea Society of Computer and Information

research focuses on stochastic scheduling problems. Each

injury constitutes a job and his unknown time until death

unless treated is represented by a stochastic due date.

The sum of the travel time to and from an injury and

service time at the scene is expressed as a stochastic

processing time. Injuries waiting for treatment are a set

of jobs. To be more specific, this research considers

scheduling problems with independent and identically

distributed processing times. This case is useful when a

large area of interest is clustered into several districts

that are small enough such that travel times are not so

much different.

Stochastic scheduling problems for minimizing the

expected number of tardy jobs have been investigated in

Balut [1], Boxma and Forst [3], Cai and Zhou [4], De et

al. [6], Emmons and Pinedo [7], Jang [9], Pinedo [15],

and Sarin et al. [17]. Two particular problems of

stochastic scheduling with i.i.d. processing times and

distinct due dates are considered in Boxma and Forst [3].

One problem has exponential processing times and

deterministic due dates. The other problem has arbitrary

processing times and exponential due dates as it is

assumed here. Sufficient optimality conditions for both

problems are provided therein. As noted in Boxma and

Forst [3], there exist many optimal solutions that do not

satisfy sufficient optimality conditions.

This research considers the cases where processing

times have arbitrary i.i.d. distributions and due dates have

arbitrary distributions. The optimal static list policies of

these cases are found by solving corresponding

assignment problems as shown in Emmons and Pinedo

[7]. This paper focuses on the special cases where due

dates are exponentially distributed. Then several

necessary conditions of optimal solutions are derived and,

using them, a dynamic programming algorithm is

proposed. Using the proposed approach is found to be

relatively faster than solving the corresponding

assignment problems.

The organization of the paper is as follows. Section 2

describes the problem considered in this paper. Section 3

investigates several necessary conditions of optimal

solutions. Section 4 uses these theoretical results to

develop a dynamic programming solution procedure.

Computational results are shown in Section 5. Final

remarks are addressed in Section 6.

Ⅱ. Probem Description

Let us consider a set of  jobs with arbitrary i.i.d.

processing times, where processing time of each job  ,

  , is an independent nonnegative random

variable   , and due date is an independent

nonnegative random variable  . In addition, a weight 

is associated with job  . Here the objective is to minimize

the expected weighted number of tardy jobs. Given a

sequence of jobs  , the expected weighted number of

tardy jobs  is defined by

 
  



Pr   

where  is the job at position  and  is the

completion time of job  in sequence  , i.e.,

   
  



  .

As long as processing times are i.i.d., the problem can

be represented as an assignment problem even if due

dates are arbitrarily distributed. For details, see Emmons

and Pinedo [7]. Given a sequence of jobs  , the th job

of the sequence gets tardy with probability

Pr
  



  . This probability depends only on

the position of the job, but neither on its previous nor

subsequent jobs.

Theorem 1

Suppose job  has an arbitrary i.i.d. processing time  

and arbitrary independent due date . Then the optimal

static list policy is obtained by solving an assignment

problem where the cost coefficients are defined as

  Pr
  



   , where  is the cost when

job  is positioned at the  th position in a sequence.

To apply the above theorem, it is required to compute

the probability that a job is tardy. If due dates are

exponentially distributed, the objective function is

simplified since the probability of being tardy has a

product form. Let   be exponentially distributed with

A Dynamic Programming Approach for Emergency Vehicle Dispatching Problems 93

mean value 


. Most injuries can be treated rather

quickly, but only occasional injuries will be treated long.

An exponential distribution seems quite plausible for this

type of service situation. The probability of the th job in

a sequence  being early is Pr
  



   , which

is Pr  

, which, in turn, is      

 for

any mutually independent nonnegative random variables

 ,   . Therefore, the objective function can be

expressed by

 
  



Pr  

 
  



  Pr
  



   
 

  




       

 (1)

Note that      is the value of the

Laplace-Stieltjes Transform (LST) of the random variable

 evaluated at  . For Laplace-Stieltjes Transform,

see Widder[19]. Let        . Then, eq. (1)

becomes

 
  



  
  (2)

Clearly, minimizing  is maximizing the expected

weighted number of early jobs 

 
  




 (3)

Now the problem becomes to find a sequence that

maximizes eq. (3).

Ⅲ. Theoretical Development

In Emmons and Pinedo [7], it is shown that

EDD(Earliest Due Date) schedule is optimal to the class of

preemptive dynamic policy when processing times are

exponential i.i.d. and due dates are stochastically ordered

as  ≤  ≤  ≤  , where ≤  means

‘stochastically less than’ in failure rate sense. However,

when a static policy is considered, EDD schedule is not

always optimal.

Suppose there is a single machine with two jobs each

of which has an i.i.d. exponential processing time with

mean 


 and exponential due date   with mean 


. In

addition, suppose  ≥  and      . Obviously

 ≤  . There are only two possible sequences, (1,

2) and (2, 1). Here the sequence (1, 2) is an EDD

sequence.

Let us compare   and  .

   

  







  

 






  







  

 










    

 






    

Clearly from the above equation, the optimality of EDD

schedule is guaranteed only when    .

If there are two arbitrary i.i.d. jobs to be scheduled,

there exist only two possible sequences, (1, 2) and (2, 1).

The difference between s of sequence (1, 2) and

sequence (2, 1) is

         

where   Pr        .

Suppose   ≤    . Then this easily

leads us to   ≥    . Therefore the

sequence (1, 2) is optimal.

DOMINANCE RULES

It is very useful to know whether a job precedes

another job in optimal solutions. This knowledge provides

dominance rules that identify a set of solutions as

non-promising, i.e., non-optimal solutions. Those rules

generate partial sequences which can significantly reduce

the computational efforts. Let us consider the gain coming

from interchanging two jobs in a sequence. Suppose  th

job and th job in a given sequence ¸ where   , is

interchanged. Let us denote the resulting sequence by

94 Journal of The Korea Society of Computer and Information

 . Then the gain of the interchange can be expressed as

follows when all the weights are assumed to be equal to

1.

 
     

    
    



     
    

    
 

 
  

  
  



 
   

   
   

  

 
   

   
  

    




 
   

   
  

    




   
   

  

    




   
   

  

    




If the gain is negative, the jobs need to be

interchanged. From the last equality, it is clear that if

 ≥  , then


   

  

    


 ≥ 

   
  

    


 . It is time to show

important optimal partial sequencing rules for jobs with

certain characteristics.

Lemma 1

In optimal sequences, job  precedes job  if  ≥ 

and   ≤    .

Proof

Suppose there is a sequence  in which job  precedes

job  . Also job  and  are at the  th and th position,

respectively. That is,   and   . Since

 ≥  , it follows 
   

  

    


 ≥ 

   
  

    


 .

And also, since   ≤    , it follows

  ≥    . Therefore, interchanging job 

and  yields no benefit. Consequently, for any sequence,

one can improve the expected number of early jobs by

interchanging jobs that satisfy the condition but violate

Lemma 1. This completes proof.

Lemma 1 is immediately followed by the next two

Corollaries.

Corollary 1

If  ≤  for all   , then it is optimal to

process jobs in non-increasing order of  .

Corollary 2

Let   ∈    and

  ∈  ≤  . If

max∈
  ≤ max∈

   , then all the jobs in

 precede all the jobs in  in optimal solutions.

Note that in Corollary 2, it is known that the exact

sequence of jobs in set  , which is non-increasing order

of  ’s. It is not known, however, the exact sequence of

jobs in set  although it is known all the jobs in 

precede all the jobs in  .

MONOTONIC PROPERTIES

Lemma 1 provides precedence relationships that need

to be preserved regardless of job positions. It is possible

to obtain position-dependent precedence relationship of

two jobs: depending on the position of one job, the other

job may precede or succeed the job.

The gain of interchanging job  at position  and job 

at position  is 
  

  
  


. Let

  
  

 . Then the gain can be redefined as

   . When   , job  and job 

should be interchanged. The function   has very

useful monotonic properties. These properties serve as a

basis for a powerful partial ordering scheme, Pivot Rule.

The Pivot Rule governs the optimal partial orderings in

such a way that all the jobs whose  is less than that of

the first job (pivot) should be processed in non-increasing

order.

The following lemmas jointly show that   is

monotonically increasing (decreasing) with respect to 

up to some  ≥  , and thereafter is monotonically

decreasing (increasing) when    (  ).

Lemma 2

For some  ≥  , if    and      ,

then       for all   .

A Dynamic Programming Approach for Emergency Vehicle Dispatching Problems 95

Proof

It suffices to show that if     , then

    . Suppose     .

Then it follows

⇒ 
    

    
  



⇒ 
    

 
    


⇒ 

     
    

⇒ 
   

  
⇒ 

  
  

    
  

⇒   

Lemma 3

For some  ≥  , if    and

    , then       for all

 ≤   .

Proof

It also suffices to show that if     ,

then     . Suppose    .

Then it follows

⇒ 
  

  
    

  

⇒ 
  

   
  

  
⇒ 

   
  

⇒ 
     

    
⇒ 

    
    

  


⇒    

Lemma 2 states that once ∙  decreases, it will

decrease thereafter, while Lemma 3 states that once it

increases, it has been increasing when    .

The Figure 1 shows the typical shape of ∙  when

   . If    and    ,  ∙  takes

negative values and has a unique minimum point.

Figure 1. Typical Shape of  ∙ 

(when    and   )

From monotonic properties of  ∙ ’s, it is clear that

the function has a unique extreme point. Let us denote

the unique position that maximizes(or minimizes)  ∙ 

by  if    (  ). Then

 










arg max
   i f   

arg max
   i f   

The position-dependent precedence relationships for a

pair of jobs are easily determined by comparing the

desired position of a job and the extreme point. The

following lemma illustrates such idea.

Lemma 4

Suppose    and job  is to be located at position

 . In an optimal solution, the following rules should be

satisfied.

1. if    , job  should precede job  .

2. if    , job  should precede job  .

3. if    , job  never be positioned at  .

Proof

It is clear from Figure 2 that, when    , the gain

of interchange     is positive only if    ,

i.e., job  should precede job  . The similar logic is

applied to the case where    . Job  can’t be located

at  since there are no other positions that make the

gain positive.

Figure 2. Pictorial Explanation of Lemma 4

Lemma 4 establishes a procedure for obtaining

position-dependent precedence relationships for a pair of

jobs. The procedure comprises of obtaining the

precedence relationships for finding  ’s and comparing

integers. Utilization of this procedure reduces

computational burden significantly since it allows

96 Journal of The Korea Society of Computer and Information

eliminating a huge amount of expensive floating-point

operations required for obtaining the position-dependent

precedence relationships.

PIVOT RULE

If all the weights are equal, the extreme point of 

has an additional property: given the position of the

extreme point of   , one can predict where the extreme

points of  and  are with  ≠  and  ≠  .

Lemma 5

Suppose      and  ∙  has its maximum

at  . Then  ∙  has its maximum at  ≤  .

Proof

Let    for simplicity. We prove the lemma by

contradiction. Suppose    . It implies that


  

  
    

  ⇒ 
   

  

By assumption,

     ⇒ 
   

   . Hence

it follows 
   

   
   .

When    , it is impossible to satisfy the above

inequality for any value of  ,  , and  such that

     since the inequality implies that when

   ,  is the closest to 0.5 and  is the farthest to

0.5. This contradiction results from assuming    .

The Lemma 5 provides a basis for Lemma 6 which

establishes partial ordering scheme that is far more

efficient than partial ordering established in Lemma 1.

Lemma 6 defines Pivot Rule: all the jobs whose  ’s are

less than that of the first job are sequenced in

non-increasing order in optimal solutions.

Figure 3. Pictorial Explanation of Lemma 5

Lemma 6

In an optimal solution, the jobs whose  ≤  are

sequenced in non-increasing order of  .

Proof

Without loss of generality, let  ≤  for

simplicity. Again the lemma is proved by contradiction.

Suppose an optimal sequence  is obtained such that

  and   ,   , and      . That is,

a job with smaller  value is scheduled earlier than a job

with larger  value.

By optimality assumption,


  

  
  



    
  



    
  



The first inequality implies      ≤ , where

 ≤  is from Lemma 5. However, the second

inequality implies    , which is a contradiction.

Lemma 6 suggests that after obtaining the right pivot,

it remains only to sequence jobs with larger  value than

that of the pivot.

Ⅳ. Pivot Dynamic Programming

This section introduces a new solution method: Pivot

Dynamic Programming. An approach shown in Held and

Karp [8] is often used for obtaining an optimal sequence

in a single machine scheduling problem. The dynamic

program in Held and Karp [8] is as follows.

 max
∈

    

where  is the set of unscheduled jobs, and   is

the cost associated with scheduling job  . The drawback

of this dynamic program is that the solution space grows

exponentially with the number of jobs since it requires

examining all the possible subsets of the given set of

jobs, i.e., the power set.

However, since the dominance rules described in

Section 2 reduce the solution space, the optimal value

A Dynamic Programming Approach for Emergency Vehicle Dispatching Problems 97

function for the dynamic program can be formulated as

follows.

 max
∈

    

∅  

 









∞ i f  ≤  and

 
min

∈

∞ i f  ≤  and
∃ ∈ 

     
∞ i f ∃ ∈   

  
for∀   ≤   


 

where    ∈  and ≤  and

 
  

 . Note that, if    , then

the objective value can be improved by swapping the job

 at position  and the job  at position  .

Above dynamic program recursively selects the last job

in  which should satisfy Lemma 1 and can be preceded

by the other jobs.

The third condition of the dynamic programming

prohibits job  from being located at the last position

since there is a job  which should be scheduled later

than job  since swapping job  and  improves the

objective value.

It seems computationally expensive to check the third

condition. However, the monotonic properties of  ∙ 

make this procedure faster.

Figure 4: Pictorial Explanation

(third condition of Dynamic Programming)

In the case where    for some ∈  , if

   , then job  should not be the last job in 

(See region A in Figure 4). On the other hand, if   

and   for some ∈  , again job

 should not be the last job in  (See region B in Figure

4).

Since the dynamic programming formulation in Held and

Karp [9] requires enumeration of all the subsets of jobs,

it cannot avoid exponentially growing number of

computations. To avoid this drawback, a new dynamic

programming approach to our problem is proposed.

In this new approach, instead of selecting a job for the

last position in a subset as proposed in Held and Karp

[8], a position for an unscheduled job with the smallest

 value in a sequence is recursively selected. So, the

state variable of the dynamic programming is a mapping

of position to a job   →  rather than a subset as in

Held and Karp [8].

Let    and    denote the set of jobs

that should precede job  and the set of jobs that should

be preceded by job  respectively, given that job  is

located at position  in sequence  . The set   

and    is determined by applying Lemma 4 to all

the unscheduled jobs. Of course, jobs that are already

scheduled in  should be included. For a set of

unscheduled jobs ,   is undefined if ∈.

This indicates job  has not been scheduled yet. Let

 ∈and  denote a set of

positions that are not currently assigned to a job.

It is now ready to present the dynamic programming

formulation as follows.










max
∈

  ⊕  i f ≠ ∅
 

where the binary operation ⊕  is defined as it gives

us a new mapping ′ such that  ′ for ≠ 

and ′ arg min
∈  .

  is defined as follows.

 










∞ i f ≠ 
∞ i f ∃ ∈  

 

∞ i f    ≠ 
∞ i f    ≠ 


 

where   arg min
∈ .

98 Journal of The Korea Society of Computer and Information

In the above formulation, a position for job  is

recursively selected. The first condition of   is that

position  is not selected if it is already occupied by a

job. The second condition means that job  should not

take the position  because it violates the third rule in

Lemma 4. The third and fourth condition avoid conflicts

with the other jobs when we schedule job  at position

 .

Choices of the Pivot

A naive approach of the above dynamic programming

will recursively select a position for a job with the

smallest  value. However, Lemma 6 and the Pivot Rule

allow avoiding substantial amount of computations. The

main problem here is how to make a right choice of the

first job, the pivot. To make choices of pivot, the

following matrix is computed.

 









min  ∈and   i f   max  ∈and  i f   

 i f for∀ ∈    

or   

where  is the possible starting (or ending) position

of job  when job  takes the first position in a sequence

when    (  ).

Figure 5. An Example of 

The matrix, whose elements are  , is denoted by  .

Let  


 be the set of jobs whose    and 


 be a

set     and ≤  . Here 


 is the set of

jobs that should be located on or before  .

Proposition 1

Job  can be chosen as a possible pivot candidate if

the th row of  conforms the following rules.

1.  ≠  for all ≠ 

2.    
 for all  s.t.   

3.   
 for all  s.t.   

The rule 1 rules out job  if there’s a job  such that

    for all    . This means that job 

should precede job  at any position of job  , therefore,

job  will never be the first job in a sequence. The rule 2

is the application of Pivot Rule. Since all the jobs whose

     should be processed in non-increasing

order, if 
    , for a job  , jobs with   

cannot be placed after job  because the number of jobs

with    overflows the possible number of positions,

  . The rule 3 checks if there’s a subset of jobs with

   which overflows the number of the possible

number of positions.

Partitioning Jobs

Once candidates of pivots are determined, the optimal

values for each pivot needs to be examined. The number

of candidates of pivots is at least 1.

Given a candidate pivot  , a partial sequence which

results from the Pivot Rule 
′
 such that   

′ and

 
′ ≥  

′ ≥  ≥  
′ ′ is obtained where 

′

is the th job in the partial sequence given that job  is

the pivot and 
′′ is the job with the smallest  . Let

 


 denote the set of jobs with    . The possible

positions of 
′ is from max  

′ to

  
′

  . For each possible position of 
′,  



can be partitioned into two sets, the front set and the

rear set. This partitioning can be done by applying

Lemma 4. Let  
  

′  denote the front set for a

possible position  of 
′. If the partition has no

conflicts, i.e.,    
  

′   , then the new

dynamic programming is applied to the set

 
  

′ . For the rear set, the partitioning is

done again with 
′, and if it has no conflict, the

A Dynamic Programming Approach for Emergency Vehicle Dispatching Problems 99

Algo. Held and Karp’s DP Pivot DP

of

Jobs
Avg. Max. Avg. Max.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 …

 90

 95

100

 0.0001

 0.0002

 0.0017

 0.0237

 0.2650

 7.2094

 94.5322

613.5409

 0.0100

 0.0100

 0.0400

 0.4000

 4.8570

 80.3960

1923.8360

11448.4020

0.0000

0.0001

0.0002

0.0003

0.0003

0.0007

0.0010

0.0007

0.0013

0.0017

…

0.0080

0.0130

0.0110

0.00

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

…

0.03

0.09

0.02

Algo. Pivot DP LP
Perf.

Ratio# of

Jobs
Avg. Max. Avg. Max.

 5

 10

 15

 20

0.0001

0.0002

0.0007

0.0016

0.01

0.01

0.01

0.01

0.0015

0.0040

0.0079

0.0126

0.01

0.01

0.02

0.02

15.000

20.000

11.286

 7.875

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

0.0020

0.0037

0.0053

0.0063

0.0080

0.0127

0.0157

0.0180

0.0193

0.0350

0.0280

0.0410

0.0800

0.0530

0.0990

0.0830

0.01

0.01

0.01

0.01

0.02

0.03

0.09

0.05

0.03

0.26

0.09

0.16

0.77

0.23

0.79

0.25

0.0187

0.0257

0.0387

0.0450

0.0613

0.0687

0.0920

0.1070

0.1353

0.1590

0.1760

0.2137

0.2720

0.2577

0.2977

0.4080

0.02

0.03

0.05

0.05

0.07

0.08

0.10

0.12

0.15

0.18

0.20

0.25

0.31

0.30

0.33

0.47

 9.350

 6.946

 7.302

 7.143

 7.663

 5.409

 5.860

 5.944

 7.010

 4.543

 6.286

 5.212

 3.400

 4.862

 3.007

 4.916

dynamic programming is applied, and so on.

Ⅴ. Computational Results

Table 1 illustrates the performance of two dynamic

programming formulations. The programs for the dynamic

programming are written in Microsoft Visual Basic and

run on a PC with Intel Pentium IV 2.0 GHz and 512MB of

main memory. Each set of experiments consists of 100

random samples of values for up to 20-jobs case, 30

random samples for the bigger jobs case.

Table 1. Comparison of CPU Time (Sec.)

While the CPU time for the formulation in Held and

Karp [8] grows exponentially as the number of jobs

increases, the Pivot Dynamic Programming performs very

well even in 100-jobs case. However, the formulation in

Held and Karp [8] cannot generate the optimal solutions

for more than 40-jobs case in reasonable time.

Table 2 shows the performances of Pivot Dynamic

Programming and assignment problem (Linear

Programming) method.

Table 2. Comparison of CPU Times (Sec.)

Pivot Dynamic Programming outperforms Linear

Programming on average and is up to 20 times faster than

Linear Programming while the worst case performance of

Pivot Dynamic Programming is not always better than

Linear Programming.

Ⅵ. Final Remarks

This paper addresses two types of stochastic

scheduling problems for minimizing the expected number

of tardy jobs. First, the cases, where the processing

times are arbitrary i.i.d. and due dates are arbitrarily

distributed, have been considered.

It is known that optimal static list policy on a single

machine can be found by solving an assignment problem

as long as the processing times are i.i.d. If the due dates

are exponentially distributed, the probability of being

tardy for a job has a product form. Therefore, the

objective function becomes simpler since it has a form of

sum of products.

Several dominance rules, including Pivot Rule that

generates very efficient partial sequences, and the

position-dependent precedence relationships, are derived

to reject non-promising solutions that are guaranteed not

be optimal. Utilization of these dominance rules provides

a foundation for a dynamic programming algorithm

proposed in this paper.

In computational experiments, the new algorithm

outperforms the classic method in Held and Karp [9]. The

classic method in Held and Karp [9] fails to solve the

problems with more than 40 jobs. Computational

100 Journal of The Korea Society of Computer and Information

experiments show our algorithm is up to 20 times faster

than solving assignment problem using Linear

Programming.

REFERENCES

[1] S. J. Balut. Scheduling to Minimize the Number of Late

Jobs When Set-Up and Processing Times are Uncertain.

Management Science, 19(11):1283–1288, 1973.

[2] R. A. Blau. N-Job, One Machine Sequencing Problems

under Uncertainty. Management Science, 20(1):101–109,

1973.

[3] O. J. Boxma and F. G. Forst. Minimizing the Expected

Weighted Number of Tardy Jobs in Stochastic Flow Shops.

Operations Research Letters, 5:119–126, 1986.

[4] X. Cai and S. Zhou. Stochastic Scheduling on Parallel

Machines subject to Random Breakdowns to Minimize

Expected Costs for Earliness and Tardy Jobs. Operations

Research, 47(3):422–437, 1999.

[5] C-S. Chang, J. G. Shanthikumar, and D. D. Yao. “Stochastic

Convexity and Stochastic Majorization,” in Stochatic

Modeling and Analysis of Manufacturing Systems (D. D.

Yao, editor). Springer-Verlag, New York, 1994.

[6] P. De, J. B. Ghosh, and C. E. Wells. On the Minimization

of the Weighted Number of Tardy Jobs with Random

Processing Times and Deadline. Computers and

Operations Research, 18:457–463, 1991.

[7] H. Emmons and M. Pinedo. Scheduling Stochastic Jobs

with Due Dates on Parallel Machines. European Journal

of Operational Research, 47:49–55, 1990.

[8] M. Held and R. M. Karp. A Dynamic Programming Approach

to Sequencing Problems. J. SIAM, 10:196–210, 1962.

[9] W. Jang. Dynamic Scheduling of Stochastic Jobs on a

Single Machine. European Journal of Operational

Research, 138:518–530, 2002.

[10] R. M. Karp. “Reducibility Among Combinatorial

Problems,” in Complexity of Computer Computations

(R. E. Miller and J. W. Thatcher, eds). Plenum Press,

New York, 1972.

[11] H. Kise and T. Ibaraki. On Balut’s Algorithm and

NP-Completeness for a Chance-Constrained

Scheduling Problem. Management Science, 29(3):384–

388, 1983.

[12] W. Li and K. D. Galzebrook. On Stochastic Machine

Scheduling with General Distributional Assumptions.

European Journal of Operational Research, 105:525 –

536, 1998.

[13] M. J. Moore. An N Job, One Machine Sequencing

Algorithm for Minimizing the Number of Late Jobs.

Management Science, 15(1):102 – 109, 1968.

[14] G. R. Parker and R. L. Rardin. Discrete Optimization.

Academic Press Inc., 1988.

[15] M. Pinedo. Stochastic Scheduling with Release Dates

and Due Dates. Operations Research, 31(3):559–572,

1983.

[16] M. Pinedo. Scheduling : Theory, Algorithms, and

Systems. Prentice-Hall Inc., 2002.

[17] S. C. Sarin, E. Erel, and G. Steiner. Sequencing Jobs

on a Single Machine with a Common Due Date and

Stochastic Processing Times. European Journal of

Operational Research, 51:188–198, 1991.

[18] H. M. Soroush and L. D. Fredendall. The Stochastic

Single Machine Scheduling Problem with Earliness and

Tardiness Costs. European Journal of Operational

Research, 77:287–302, 1994.

[19] D. V. Widder. The Laplace Transform. Princeton

University Press, 1941.

Authors

Jae Young Choi received the B.S.,degree in
Management Science from KAIST in 1990,
M.S. degree in Management Science from
KAIST in 1993, and Ph.D. degree in
Industrial Engineering from State
University of New York at Buffalo in 2002.

Dr. Choi joined the faculty of College of Information
Technology at Ajou University in 2016. He is currently
an associate Professor in the Department of Software.
His significant areas of interest are Business Analytics,
Bigdata and IoT.

Heung-Kyu Kim received the B.S.,degree
in Management Science from KAIST in
1991, M.S. degree in Industrial
Engineering from KAIST in 1993, and
Ph.D. degree in Industrial Engineering
from Purdue University in 2002.

Dr. Kim joined the faculty of School of Business
Administration at Dankook University in 2003. He is
currently a Professor in School of Business
Administration, Dankook University. He is interested in
operations research, economic analysis, and R&D
performance evaluation.

