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Problems
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Abstract

In this research, emergency vehicle dispatching problems faced with in the wake of massive 

natural disasters are considered. Here, the emergency vehicle dispatching problems can be regarded 

as a single machine stochastic scheduling problems, where the processing times are independently 

and identically distributed random variables, are considered. The objective of minimizing the expected 

number of tardy jobs, with distinct job due dates that are independently and arbitrarily distributed 

random variables, is dealt with. For these problems, optimal static-list policies can be found by 

solving corresponding assignment problems. However, for the special cases where due dates are 

exponentially distributed random variables, using a proposed dynamic programming approach is found 

to be relatively faster than solving the corresponding assignment problems. This so-called Pivot 

Dynamic Programming approach exploits necessary optimality conditions derived for ordering the jobs 

partially.
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Ⅰ. Introduction

This research deals with emergency vehicle 

dispatching problems faced with in the wake of massive 

natural disasters. In massive disasters, the degree of 

injury varies depending on the emergency situation. Some 

injuries require immediate medical treatment, some need 

only minor treatment. Hence, First Come First Served 

(FCFS) or prioritized FCFS, which are commonly used 

rules, may not be useful because there will be many 

severe injuries in a short time period.

In emergency vehicle dispatching, both severity of 

injuries and response times to the emergency scene must 

be considered. A good emergency vehicle dispatching 

policy should have the following characteristics.

The policy should be optimal or near optimal in terms 

system such as the total waiting time.

Determining the order of dispatching should be fast 

since it is not acceptable to lose lives because of slow 

dispatching decisions, even though they are optimal.

The policy must be able to be adjusted according to 

the dynamic situation of emergency and the dynamics of 

situational information.

To simplify the problem, this research focuses on 

single-machine cases. We envision that the area of 

interest can be clustered into several clusters small 

enough for a single vehicle to serving a uniquely assigned 

cluster. The scheduling aspects of out research is used to 

determine the order of service by the unique vehicle to 

the casualties within such a cluster.

The approach to emergency vehicle dispatching in this 
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research focuses on stochastic scheduling problems. Each 

injury constitutes a job and his unknown time until death 

unless treated is represented by a stochastic due date. 

The sum of the travel time to and from an injury and 

service time at the scene is expressed as a stochastic 

processing time. Injuries waiting for treatment are a set 

of jobs. To be more specific, this research considers 

scheduling problems with independent and identically 

distributed processing times. This case is useful when a 

large area of interest is clustered into several districts 

that are small enough such that travel times are not so 

much different.

Stochastic scheduling problems for minimizing the 

expected number of tardy jobs have been investigated in 

Balut [1], Boxma and Forst [3], Cai and Zhou [4], De et 

al. [6], Emmons and Pinedo [7], Jang [9], Pinedo [15], 

and Sarin et al. [17]. Two particular problems of 

stochastic scheduling with i.i.d. processing times and 

distinct due dates are considered in Boxma and Forst [3]. 

One problem has exponential processing times and 

deterministic due dates. The other problem has arbitrary 

processing times and exponential due dates as it is 

assumed here. Sufficient optimality conditions for both 

problems are provided therein. As noted in Boxma and 

Forst [3], there exist many optimal solutions that do not 

satisfy sufficient optimality conditions.

This research considers the cases where processing 

times have arbitrary i.i.d. distributions and due dates have 

arbitrary distributions. The optimal static list policies of 

these cases are found by solving corresponding 

assignment problems as shown in Emmons and Pinedo 

[7]. This paper focuses on the special cases where due 

dates are exponentially distributed. Then several 

necessary conditions of optimal solutions are derived and, 

using them, a dynamic programming algorithm is 

proposed. Using the proposed approach is found to be 

relatively faster than solving the corresponding 

assignment problems.

The organization of the paper is as follows. Section 2 

describes the problem considered in this paper. Section 3 

investigates several necessary conditions of optimal 

solutions. Section 4 uses these theoretical results to 

develop a dynamic programming solution procedure. 

Computational results are shown in Section 5. Final 

remarks are addressed in Section 6.

Ⅱ. Probem Description

Let us consider a set of  jobs with arbitrary i.i.d. 

processing times, where processing time of each job  , 

  , is an independent nonnegative random 

variable   , and due date is an independent 

nonnegative random variable  . In addition, a weight  

is associated with job  . Here the objective is to minimize 

the expected weighted number of tardy jobs. Given a 

sequence of jobs  , the expected weighted number of 

tardy jobs  is defined by

 
  



Pr   

where  is the job at position   and   is the 

completion time of job  in sequence  , i.e., 

   
  



  .

As long as processing times are i.i.d., the problem can 

be represented as an assignment problem even if due 

dates are arbitrarily distributed. For details, see Emmons 

and Pinedo [7]. Given a sequence of jobs  , the th job 

of the sequence gets tardy with probability 

Pr
  



  . This probability depends only on 

the position of the job, but neither on its previous nor 

subsequent jobs.

Theorem 1

Suppose job   has an arbitrary i.i.d. processing time   

and arbitrary independent due date . Then the optimal 

static list policy is obtained by solving an assignment 

problem where the cost coefficients are defined as 

  Pr
  



   , where    is the cost when 

job   is positioned at the  th position in a sequence.

To apply the above theorem, it is required to compute 

the probability that a job is tardy. If due dates are 

exponentially distributed, the objective function is 

simplified since the probability of being tardy has a 

product form. Let   be exponentially distributed with 
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mean value 


. Most injuries can be treated rather 

quickly, but only occasional injuries will be treated long. 

An exponential distribution seems quite plausible for this 

type of service situation. The probability of the th job in 

a sequence  being early is Pr
  



   , which 

is Pr  

, which, in turn, is      

 for 

any mutually independent nonnegative random variables 

 ,   . Therefore, the objective function can be 

expressed by

                                                      

 
  



Pr  

 
  



  Pr
  



   
 

  




       

  (1)

Note that       is the value of the 

Laplace-Stieltjes Transform (LST) of the random variable 

  evaluated at  . For Laplace-Stieltjes Transform, 

see Widder[19]. Let        . Then, eq. (1) 

becomes

                                                       

  
  



  
                                (2)

Clearly, minimizing  is maximizing the expected 

weighted number of early jobs 

                                                      

 
  




                            (3)

Now the problem becomes to find a sequence that 

maximizes eq. (3).

Ⅲ. Theoretical Development

In Emmons and Pinedo [7], it is shown that 

EDD(Earliest Due Date) schedule is optimal to the class of 

preemptive dynamic policy when processing times are 

exponential i.i.d. and due dates are stochastically ordered 

as  ≤  ≤  ≤  , where ≤   means 

‘stochastically less than’ in failure rate sense. However, 

when a static policy is considered, EDD schedule is not 

always optimal.

Suppose there is a single machine with two jobs each 

of which has an i.i.d. exponential processing time with 

mean 


 and exponential due date   with mean 


. In 

addition, suppose  ≥   and      . Obviously 

 ≤  . There are only two possible sequences, (1, 

2) and (2, 1). Here the sequence (1, 2) is an EDD 

sequence.

Let us compare   and  .

   

  







  

 






  







  

 










    

 






    

Clearly from the above equation, the optimality of EDD 

schedule is guaranteed only when    .

If there are two arbitrary i.i.d. jobs to be scheduled, 

there exist only two possible sequences, (1, 2) and (2, 1). 

The difference between s of sequence (1, 2) and 

sequence (2, 1) is 

         

where   Pr        .

Suppose   ≤    . Then this easily 

leads us to   ≥    . Therefore the 

sequence (1, 2) is optimal.

DOMINANCE RULES

It is very useful to know whether a job precedes 

another job in optimal solutions. This knowledge provides 

dominance rules that identify a set of solutions as 

non-promising, i.e., non-optimal solutions. Those rules 

generate partial sequences which can significantly reduce 

the computational efforts. Let us consider the gain coming 

from interchanging two jobs in a sequence. Suppose  th 

job and th job in a given sequence ¸ where   , is 

interchanged. Let us denote the resulting sequence by 
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 . Then the gain of the interchange can be expressed as 

follows when all the weights are assumed to be equal to 

1.

 
     

    
    



     
    

    
 

 
  

  
  



 
   

   
   

  

 
   

   
  

    




 
   

   
  

    




   
   

  

    




   
   

  

    




If the gain is negative, the jobs need to be 

interchanged. From the last equality, it is clear that if 

 ≥  , then 


   

  

    


 ≥ 

   
  

    


 . It is time to show 

important optimal partial sequencing rules for jobs with 

certain characteristics.

Lemma 1

In optimal sequences, job   precedes job   if  ≥   

and   ≤    .

Proof

Suppose there is a sequence  in which job   precedes 

job  . Also job  and   are at the  th and th position, 

respectively. That is,    and   . Since 

 ≥  , it follows 
   

  

    


 ≥ 

   
  

    


  . 

And also, since   ≤    , it follows 

  ≥    . Therefore, interchanging job   

and   yields no benefit. Consequently, for any sequence, 

one can improve the expected number of early jobs by 

interchanging jobs that satisfy the condition but violate 

Lemma 1. This completes proof.

Lemma 1 is immediately followed by the next two 

Corollaries.

Corollary 1

If  ≤   for all   , then it is optimal to 

process jobs in non-increasing order of  .

Corollary 2

Let   ∈    and 

  ∈  ≤  . If 

max∈
  ≤ max∈

   , then all the jobs in 

  precede all the jobs in   in optimal solutions.

Note that in Corollary 2, it is known that the exact 

sequence of jobs in set  , which is non-increasing order 

of  ’s. It is not known, however, the exact sequence of 

jobs in set   although it is known all the jobs in   

precede all the jobs in  .

MONOTONIC PROPERTIES

Lemma 1 provides precedence relationships that need 

to be preserved regardless of job positions. It is possible 

to obtain position-dependent precedence relationship of 

two jobs: depending on the position of one job, the other 

job may precede or succeed the job.

The gain of interchanging job  at position   and job   

at position  is 
  

  
  


. Let 

  
  

 . Then the gain can be redefined as 

   . When   , job   and job   

should be interchanged. The function   has very 

useful monotonic properties. These properties serve as a 

basis for a powerful partial ordering scheme, Pivot Rule. 

The Pivot Rule governs the optimal partial orderings in 

such a way that all the jobs whose   is less than that of 

the first job (pivot) should be processed in non-increasing 

order.

The following lemmas jointly show that   is 

monotonically increasing (decreasing) with respect to   

up to some  ≥  , and thereafter is monotonically 

decreasing (increasing) when    (    ).

Lemma 2

For some  ≥  , if     and      , 

then       for all   .
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Proof

It suffices to show that if     , then 

    . Suppose     . 

Then it follows

⇒ 
    

    
  



⇒ 
    

 
    


⇒ 

     
    

⇒ 
   

  
⇒ 

  
  

    
  

⇒   

Lemma 3

For some  ≥  , if     and 

    , then       for all 

 ≤   .

Proof

It also suffices to show that if     , 

then     . Suppose    . 

Then it follows

⇒ 
  

  
    

  

⇒ 
  

   
  

  
⇒ 

   
  

⇒ 
     

    
⇒ 

    
    

  


⇒    

Lemma 2 states that once ∙  decreases, it will 

decrease thereafter, while Lemma 3 states that once it 

increases, it has been increasing when    .

The Figure 1 shows the typical shape of ∙  when 

   . If     and    ,  ∙  takes 

negative values and has a unique minimum point.

Figure 1. Typical Shape of  ∙ 

(when     and   )

From monotonic properties of  ∙ ’s, it is clear that 

the function has a unique extreme point. Let us denote 

the unique position that maximizes(or minimizes)  ∙  

by  if     (    ). Then

 










arg max
   i f   

arg max
   i f   

The position-dependent precedence relationships for a 

pair of jobs are easily determined by comparing the 

desired position of a job and the extreme point. The 

following lemma illustrates such idea.

Lemma 4

Suppose     and job   is to be located at position 

 . In an optimal solution, the following rules should be 

satisfied.

1. if    , job  should precede job  .

2. if    , job   should precede job  .

3. if    , job   never be positioned at  .

Proof

It is clear from Figure 2 that, when    , the gain 

of interchange     is positive only if    , 

i.e., job   should precede job  . The similar logic is 

applied to the case where    . Job   can’t be located 

at  since there are no other positions that make the 

gain positive.

Figure 2. Pictorial Explanation of Lemma 4

Lemma 4 establishes a procedure for obtaining 

position-dependent precedence relationships for a pair of 

jobs. The procedure comprises of obtaining the 

precedence relationships for finding  ’s and comparing 

integers. Utilization of this procedure reduces 

computational burden significantly since it allows 
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eliminating a huge amount of expensive floating-point 

operations required for obtaining the position-dependent 

precedence relationships.

PIVOT RULE

If all the weights are equal, the extreme point of   

has an additional property: given the position of the 

extreme point of   , one can predict where the extreme 

points of   and  are with  ≠   and  ≠  .

Lemma 5

Suppose       and  ∙  has its maximum 

at  . Then  ∙  has its maximum at  ≤  .

Proof

Let     for simplicity. We prove the lemma by 

contradiction. Suppose    . It implies that


  

  
    

  ⇒ 
   

  

By assumption,

     ⇒ 
   

   . Hence 

it follows 
   

   
   .

When    , it is impossible to satisfy the above 

inequality for any value of  ,  , and   such that 

      since the inequality implies that when 

   ,   is the closest to 0.5 and   is the farthest to 

0.5. This contradiction results from assuming    .

The Lemma 5 provides a basis for Lemma 6 which 

establishes partial ordering scheme that is far more 

efficient than partial ordering established in Lemma 1. 

Lemma 6 defines Pivot Rule: all the jobs whose  ’s are 

less than that of the first job are sequenced in 

non-increasing order in optimal solutions.

Figure 3. Pictorial Explanation of Lemma 5

Lemma 6

In an optimal solution, the jobs whose  ≤   are 

sequenced in non-increasing order of  .

Proof

Without loss of generality, let  ≤   for 

simplicity. Again the lemma is proved by contradiction. 

Suppose an optimal sequence  is obtained such that 

   and   ,   , and      . That is, 

a job with smaller   value is scheduled earlier than a job 

with larger   value.

By optimality assumption,


  

  
  



    
  



    
  



The first inequality implies      ≤ , where 

 ≤  is from Lemma 5. However, the second 

inequality implies    , which is a contradiction.

Lemma 6 suggests that after obtaining the right pivot, 

it remains only to sequence jobs with larger   value than 

that of the pivot.

Ⅳ. Pivot Dynamic Programming

This section introduces a new solution method: Pivot 

Dynamic Programming. An approach shown in Held and 

Karp [8] is often used for obtaining an optimal sequence 

in a single machine scheduling problem. The dynamic 

program in Held and Karp [8] is as follows.

 max
∈

    

where   is the set of unscheduled jobs, and   is 

the cost associated with scheduling job  . The drawback 

of this dynamic program is that the solution space grows 

exponentially with the number of jobs since it requires 

examining all the possible subsets of the given set of 

jobs, i.e., the power set.

However, since the dominance rules described in 

Section 2 reduce the solution space, the optimal value 
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function for the dynamic program can be formulated as 

follows.

 max
∈

    

∅  

 









∞ i f  ≤  and

 
min

∈

∞ i f  ≤  and
∃ ∈ 

     
∞ i f ∃ ∈   

  
for∀   ≤   


 

where    ∈  and ≤  and 

 
  

 . Note that, if    , then 

the objective value can be improved by swapping the job 

  at position  and the job   at position  .

Above dynamic program recursively selects the last job 

in   which should satisfy Lemma 1 and can be preceded 

by the other jobs.

The third condition of the dynamic programming 

prohibits job   from being located at the last position 

since there is a job  which should be scheduled later 

than job   since swapping job   and  improves the 

objective value.

It seems computationally expensive to check the third 

condition. However, the monotonic properties of  ∙  

make this procedure faster.

Figure 4: Pictorial Explanation

(third condition of Dynamic Programming)

In the case where     for some ∈  , if 

   , then job   should not be the last job in   

(See region A in Figure 4). On the other hand, if      

and   for some ∈  , again job 

  should not be the last job in   (See region B in Figure 

4).

Since the dynamic programming formulation in Held and 

Karp [9] requires enumeration of all the subsets of jobs, 

it cannot avoid exponentially growing number of 

computations. To avoid this drawback, a new dynamic 

programming approach to our problem is proposed.

In this new approach, instead of selecting a job for the 

last position in a subset as proposed in Held and Karp 

[8], a position for an unscheduled job with the smallest 

  value in a sequence is recursively selected. So, the 

state variable of the dynamic programming is a mapping 

of position to a job   →   rather than a subset as in 

Held and Karp [8].

Let    and    denote the set of jobs 

that should precede job   and the set of jobs that should 

be preceded by job   respectively, given that job   is 

located at position   in sequence  . The set    

and    is determined by applying Lemma 4 to all 

the unscheduled jobs. Of course, jobs that are already 

scheduled in  should be included. For a set of 

unscheduled jobs ,   is undefined if ∈. 

This indicates job   has not been scheduled yet. Let 

 ∈and  denote a set of 

positions that are not currently assigned to a job.

It is now ready to present the dynamic programming 

formulation as follows.










max
∈

  ⊕  i f ≠ ∅
 

where the binary operation ⊕   is defined as it gives 

us a new mapping ′  such that  ′ for ≠   

and ′ arg min
∈  .

  is defined as follows.

 










∞ i f ≠ 
∞ i f ∃ ∈  

 

∞ i f    ≠ 
∞ i f    ≠ 


 

where   arg min
∈ .
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In the above formulation, a position for job   is 

recursively selected. The first condition of   is that 

position   is not selected if it is already occupied by a 

job. The second condition means that job   should not 

take the position   because it violates the third rule in 

Lemma 4. The third and fourth condition avoid conflicts 

with the other jobs when we schedule job   at position 

 .

Choices of the Pivot

A naive approach of the above dynamic programming 

will recursively select a position for a job with the 

smallest   value. However, Lemma 6 and the Pivot Rule 

allow avoiding substantial amount of computations. The 

main problem here is how to make a right choice of the 

first job, the pivot. To make choices of pivot, the 

following matrix is computed.

 









min  ∈and   i f   max  ∈and  i f   

 i f for∀ ∈    

or   

where   is the possible starting (or ending) position 

of job   when job   takes the first position in a sequence 

when     (   ).

Figure 5. An Example of 

The matrix, whose elements are  , is denoted by  . 

Let  


 be the set of jobs whose     and 


 be a 

set     and ≤  . Here 


 is the set of 

jobs that should be located on or before  .

Proposition 1

Job   can be chosen as a possible pivot candidate if 

the th row of   conforms the following rules.

1.  ≠   for all ≠ 

2.    
 for all   s.t.   

3.   
 for all   s.t.   

The rule 1 rules out job   if there’s a job   such that 

    for all    . This means that job   

should precede job   at any position of job  , therefore, 

job   will never be the first job in a sequence. The rule 2 

is the application of Pivot Rule. Since all the jobs whose 

      should be processed in non-increasing 

order, if 
    , for a job  , jobs with     

cannot be placed after job   because the number of jobs 

with     overflows the possible number of positions, 

  . The rule 3 checks if there’s a subset of jobs with 

    which overflows the number of the possible 

number of positions.

Partitioning Jobs

Once candidates of pivots are determined, the optimal 

values for each pivot needs to be examined. The number 

of candidates of pivots is at least 1.

Given a candidate pivot  , a partial sequence which 

results from the Pivot Rule 
′
 such that   

′ and 

 
′ ≥  

′ ≥  ≥  
′ ′  is obtained where 

′ 

is the th job in the partial sequence given that job   is 

the pivot and 
′′ is the job with the smallest  . Let 

 


 denote the set of jobs with    . The possible 

positions of 
′ is from max  

′ to 

  
′

  . For each possible position of 
′,   


 

can be partitioned into two sets, the front set and the 

rear set. This partitioning can be done by applying 

Lemma 4. Let  
  

′  denote the front set for a 

possible position   of 
′. If the partition has no 

conflicts, i.e.,    
  

′   , then the new 

dynamic programming is applied to the set 

 
  

′ . For the rear set, the partitioning is 

done again with 
′, and if it has no conflict, the 
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Algo. Held and Karp’s DP Pivot DP

# of 

Jobs
Avg. Max. Avg. Max.

   5

  10

  15

  20

  25

  30

  35

  40

  45

  50

  …

  90

  95

100

   0.0001

   0.0002

   0.0017

   0.0237

   0.2650

   7.2094

  94.5322

613.5409

   0.0100

   0.0100

   0.0400

   0.4000

   4.8570

  80.3960

1923.8360

11448.4020

0.0000

0.0001

0.0002

0.0003

0.0003

0.0007

0.0010

0.0007

0.0013

0.0017

…

0.0080

0.0130

0.0110

0.00

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

…

0.03

0.09

0.02

Algo. Pivot DP LP
Perf.

Ratio# of 

Jobs
Avg. Max. Avg. Max.

   5

  10

  15

  20

0.0001

0.0002

0.0007

0.0016

0.01

0.01

0.01

0.01

0.0015

0.0040

0.0079

0.0126

0.01

0.01

0.02

0.02

15.000

20.000

11.286

  7.875

  25

  30

  35

  40

  45

  50

  55

  60

  65

  70

  75

  80

  85

  90

  95

 100

0.0020

0.0037

0.0053

0.0063

0.0080

0.0127

0.0157

0.0180

0.0193

0.0350

0.0280

0.0410

0.0800

0.0530

0.0990

0.0830

0.01

0.01

0.01

0.01

0.02

0.03

0.09

0.05

0.03

0.26

0.09

0.16

0.77

0.23

0.79

0.25

0.0187

0.0257

0.0387

0.0450

0.0613

0.0687

0.0920

0.1070

0.1353

0.1590

0.1760

0.2137

0.2720

0.2577

0.2977

0.4080

0.02

0.03

0.05

0.05

0.07

0.08

0.10

0.12

0.15

0.18

0.20

0.25

0.31

0.30

0.33

0.47

  9.350

  6.946

  7.302

  7.143

  7.663

  5.409

  5.860

  5.944

  7.010

  4.543

  6.286

  5.212

  3.400

  4.862

  3.007

  4.916

dynamic programming is applied, and so on.

Ⅴ. Computational Results

Table 1 illustrates the performance of two dynamic 

programming formulations. The programs for the dynamic 

programming are written in Microsoft Visual Basic and 

run on a PC with Intel Pentium IV 2.0 GHz and 512MB of 

main memory. Each set of experiments consists of 100 

random samples of  values for up to 20-jobs case, 30 

random samples for the bigger jobs case.

Table 1. Comparison of CPU Time (Sec.)

While the CPU time for the formulation in Held and 

Karp [8] grows exponentially as the number of jobs 

increases, the Pivot Dynamic Programming performs very 

well even in 100-jobs case. However, the formulation in 

Held and Karp [8] cannot generate the optimal solutions 

for more than 40-jobs case in reasonable time.

Table 2 shows the performances of Pivot Dynamic 

Programming and assignment problem (Linear 

Programming) method.

Table 2. Comparison of CPU Times (Sec.)

Pivot Dynamic Programming outperforms Linear 

Programming on average and is up to 20 times faster than 

Linear Programming while the worst case performance of 

Pivot Dynamic Programming is not always better than 

Linear Programming.

Ⅵ. Final Remarks

This paper addresses two types of stochastic 

scheduling problems for minimizing the expected number 

of tardy jobs. First, the cases, where the processing 

times are arbitrary i.i.d. and due dates are arbitrarily 

distributed, have been considered.

It is known that optimal static list policy on a single 

machine can be found by solving an assignment problem 

as long as the processing times are i.i.d. If the due dates 

are exponentially distributed, the probability of being 

tardy for a job has a product form. Therefore, the 

objective function becomes simpler since it has a form of 

sum of products.

Several dominance rules, including Pivot Rule that 

generates very efficient partial sequences, and the 

position-dependent precedence relationships, are derived 

to reject non-promising solutions that are guaranteed not 

be optimal. Utilization of these dominance rules provides 

a foundation for a dynamic programming algorithm 

proposed in this paper.

In computational experiments, the new algorithm 

outperforms the classic method in Held and Karp [9]. The 

classic method in Held and Karp [9] fails to solve the 

problems with more than 40 jobs. Computational 
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experiments show our algorithm is up to 20 times faster 

than solving assignment problem using Linear 

Programming.
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