• 제목/요약/키워드: static and stress analyses

검색결과 121건 처리시간 0.027초

Harmonic Axisymmetric Thick Shell Element for Static and Vibration Analyses

  • Kim, Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1747-1754
    • /
    • 2004
  • In this study, a new harmonic axisymmetric thick shell element for static and dynamic analyses is proposed. The newly proposed element considering shear strain is based on a modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees for displacement field interpolation in order to enhance numerical performance. The stress parameters selected via the field-consistency concept. are very important in formulating a trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the dynamic reduction. Several numerical examples confirm that the present element shows improved efficiency and yields very accurate results for static and vibration analyses.

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.349-358
    • /
    • 2023
  • Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.199-215
    • /
    • 2005
  • An assumed stress quadrilateral thin/moderately thick plate element HQP4 based on the Mindlin/Reissner plate theory is proposed. The formulation is based on Hellinger-Reissner variational principle. Static and free vibration analyses of plates are carried out. Numerical examples are presented to show that the validity and efficiency of the present element for static and free vibration analysis of plates. Satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for thin plate analysis.

노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구 (Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests)

  • 문성호
    • 한국도로학회논문집
    • /
    • 제19권1호
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

지오텍스타일 백으로 보강된 철도노반의 정적거동 분석 (Static Behavior of Reinforced Railway Roadbed by Geotextile Bag)

  • 이동현;신은철
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.180-186
    • /
    • 2006
  • In this study, a large-scale laboratory model test, 2-D and 3-D numerical analyses were conducted to verify the reinforcement effect by utilizing geotextile bag on the railway roadbed. Static loading which simulated train load was applied on the geotextile bag-reinforced railway roadbed and also unreinforced railway roadbed, Computer program named Pentagon which is a part of FEM programs was used in the numerical analysis. Based on the results of laboratory test, 2-D and 3-D numerical analyses, the effect of load distribution and settlement reduction was found to be depending on the geotextile characteristics, tensile strength of geotextite, and interface friction angle between geotextile bags. In general, the result of 2-D and 3-D numerical analyses shows lower value than that of laboratory test. Also, the result of 3-D numerical analyses shows lower value than that of 2-D numerical analyses because of its stress transfer effect.

An assumed-stress hybrid element for static and free vibration analysis of folded plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.405-421
    • /
    • 2007
  • A four-node hybrid stress element for analysing orthotropic folded plate structures is presented. The formulation is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. The proposed element has six degree of freedom per node and permits an easy connection to other type of elements. An equilibrated stress field in each element and inter element compatible boundary displacement field are assumed independently. Static and free vibration analyses of folded plates are carried out on numerical examples to show that the validity and efficiency of the present element.

차체구조의 구조기인 내구 설계 (Structure Borne Durability Design of a Vehicle Body Structure)

  • 김효식;임홍재
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.109-121
    • /
    • 2004
  • This paper presents an optimal design method for structure-borne durability of a vehicle body structure. Structure-borne durability design requires a new design that can increase fatigue lives of critical areas in a structure and must prohibit transition phenomenon of critical areas that results from modification of the structure at the same time. Therefore, the optimization problem fur structure-borne durability design are consists of an objective function and design constraints of 2 types; type 1-constraint that increases fatigue lives of the critical areas to the required design limits and type 2-constraint that prohibits transition phenomenon of critical areas. The durability design problem is generally dynamic because a designer must consider the dynamic behavior such as fatigue analyses according to the structure modification during the optimal design process. This design scheme, however, requires such high computational cost that the design method cannot be applicable. For the purpose of efficiency of the durability design, we presents a method which carry out the equivalent static design problem instead of the dynamic one. In the proposed method, dynamic design constraints for fatigue life, are replaced to the equivalent static design constraints for stress/strain coefficients. The equivalent static design constraints are computed from static or eigen-value analyses. We carry out an optimal design for structure-borne durability of the newly developed bus and verify the effectiveness of the proposed method by examination of the result.

A hybrid 8-node hexahedral element for static and free vibration analysis

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.571-590
    • /
    • 2005
  • An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed for static and free vibration analyses. The element formulation is based directly on an 8-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational principle. Numerical examples are presented to show the validity and efficiency of the present element for static and free vibration analysis.

소형 수직축 풍력발전기의 내진검증 해석 (Seismic Qualification Analysis of a Vertical-Axis Wind Turbine)

  • 최영휴;홍민기
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.