• Title/Summary/Keyword: state-space equation

Search Result 305, Processing Time 0.024 seconds

A Fast Time Domain Digital Simulation for the Series Resonant Converter (직렬 공진형 변환기에 관한 시간 영역 디지틀 시뮬레이션)

  • Kim, Marn-Go;Han, Jae-Won;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.534-538
    • /
    • 1987
  • State-space techniques are employed to derive an equivalent nonlinear recurrent time-domain model that describes the series resonant converter behavior exactly. This model is employed effectively to analyze large signal behavior by propagating the recurrent equation and matching boundary conditions through digital computation. The model is verified with a laboratory converter for a steady-state operation.

  • PDF

Vibration Control of a Rotating Cantilevered Beam Using Piezoceramic Actuators (압전 세라믹 작동기를 이용한 회전 외팔 보의 진동 제어)

  • 박종석;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.255-259
    • /
    • 1996
  • This paper presents active vibration control of a rotating cantilevered beam using piezoceramic actuators. A governing equation of motion is obtained by the Hamilton's principle and expressed in the state space representation. Subsequently, an H$_{\infty}$ control which is robust to system uncertainties is synthesized through the loop shaping design procedure. Computer simulations for the steady-state vibration control are undertaken in order to demonstrate the effectiveness and robustness of the proposed control methodology..y.

  • PDF

REMARK ON THE CONTROLLABILITY FOR SEMILINEAR EVOLUTION EQUATIONS

  • Jeong, Jin-Mun
    • East Asian mathematical journal
    • /
    • v.29 no.5
    • /
    • pp.481-489
    • /
    • 2013
  • In this paper we deal with approximate controllability for semilinear system in a Hilbert space. In order to obtain the controllability, we assume that the system of the generalized eigenspaces of the principal operator is complete in the state space, which has a simple form and can be applied to many examples. Because of its simple form, some examples of controllability of the systems governed by the semilinear equations will be given.

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

Realization of Torsional Response based on Multi-mass Modeling of Turbine-Generator Shaft System (터빈 발전기 축 시스템의 다중 질량체 모델링을 통한 비틀림 응답 구현)

  • Park, Ji-Kyung;Cho, Gyu-Jung;Sohn, Seung-Hyun;Chung, Se-Jin;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.201-207
    • /
    • 2015
  • Turbine-generator torsional response is caused by interaction between electrical transient air-gap torque and mechanical characteristics of turbine-generator shafts. If torsional shaft torque exceeds a certain threshold, the loss of fatigue life may occur and, in the end, it is possible to happen permanent shaft failure. Therefore, it is required to understand the torsional response for reliable operation and protection of turbine-generator shaft system. In this paper, we introduced multi-mass modeling method of turbine-generator shaft system using mechanical-electrical analogy and state-space equation to verify the transient torsional response based on ElectroMagnetic Transient Program (EMTP). These simple realization methods for turbine-generator shaft torsional response could be helpful to understand torsional interaction phenomena and develop the transient torque reduction countermeasures for turbine-generator shaft system.

Multi-modal Vibration Control of Intelligent Laminated Composite Plates Using System Identification and Optimal Control (시스템식별과 최적제어를 이용한 지능형 복합적층판의 다중보드 진동제어)

  • 김정수;강영규;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • Active vibration control of intelligent laminated composite plates is performed experimental1y Laminated composite place is modeled by the system identification method. For the system identification process, the laminated composite place is excited by two piezoelectric actuators with PRBS signals. At the same time, the displacement of the laminated composite plate is measured by a gap sensor. From these excited PRBS signals and the measured displacement sequence, system parameters of the laminated composite plate are estimated using a recursive prediction error method. Model of the laminated composite plate with two piezoeletric actuators is assumed to be the form of ARMAX. From the estimated ARHMAX model, a state space equation of the observable canonical form is obtained. With this state space equation, a controller and an observer for active vibration control is designed using the optimal control method. Controller and observer are implemented on a digital system. Experiments on the vibration control are Performed with changing the outer layer fiber orientation of intelligent composite plates.

Identification of Closed Loop System by Subspace Method (부분공간법에 의한 페루프 시스템의 동정)

  • Lee, Dong-Cheol;Bae, Jong-Il;Hong, Soon-Il;Kim, Jong-Kyung;Jo, Bong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2143-2145
    • /
    • 2003
  • In the linear system identification using the discrete time constant coefficients, there is a subspace method based on 4SID recently much suggested instead of the parametric method like as the maximum likelihood method. The subspace method is not related with the impulse response and difference equation in its input-output equation, but with the system matrix of the direct state space model from the input-output data. The subspace method is a very useful tool to adopt in the multivariable system identification, but it has a shortage unable to adopt in the closed-loop system identification. In this paper, we are suggested the methods to get rid of the shortage of the subspace method in the closed-loop system identification. The subspace method is used in the estimate of the output prediction values from the estimating of the state space vector. And we have compared the results with the outputs of the recursive least square method in the numerical simulation.

  • PDF

Seismic surface waves in a pre-stressed imperfectly bonded covered half-space

  • Negin, Masoud
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • Propagation of the generalized Rayleigh waves in an elastic half-space covered by an elastic layer for different initial stress combinations and imperfect contact conditions is investigated. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed, the corresponding dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results on the influence of the initial stress patterns and on the influence of the contact conditions are presented and discussed. The case where the external forces are "follower forces" is considered as well. These investigations provide some theoretical foundations for the study of the near-surface waves propagating in layered mechanical systems and can be successfully used for estimation of the degree of the bonded defects between layers, fault characteristics and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Integration of 3-Dim SPH Scheme into the ExLO Code (극대변형 해석을 위한 SPH 수치기법 개발 및 ExLO 코드 연계)

  • Lee, Min-Hyung;Cho, Young-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.532-537
    • /
    • 2011
  • This paper describes the development of SPH(Smooth Particle Hydrodynamics) scheme and integration into the multi-material shock physics code(ExLO) for the purpose of the application to the extreme large deformation problems. SPH numerical scheme has been extended into the fluid dynamics and the high-speed impact events, such as space structure protection against space debris and meteorite catering. Like other hydrocodes, SPH scheme also solves the conservation equations with the constitutive equation including equation of state. The benchmark problem, Taylor-Impact test, was simulated and the predictions show good agreements with both the published numerical data and experimental data. Currently, the contact treatment between materials is under development.

Numerical Method for the Analysis of Bilinear Systems via Legendre Wavelets (르장드르 웨이블릿을 이용한 쌍일차 시스템 수치 해석)

  • Kim, Beomsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.827-833
    • /
    • 2013
  • In this paper, an efficient computational method is presented for state space analysis of bilinear systems via Legendre wavelets. The differential matrix equation is converted to a generalized Sylvester matrix equation by using Legendre wavelets as a basis. First, an explicit expression for the inverse of the integral operational matrix of the Legendre wavelets is presented. Then using it, we propose a preorder traversal algorithm to solve the generalized Sylvester matrix equation, which greatly reduces the computation time. Finally the efficiency of the proposed method is discussed using numerical examples.