• Title/Summary/Keyword: state-delay

Search Result 957, Processing Time 0.045 seconds

Implementation and tuning of adaptive generalized predictive PID for process control (공정 제어를 위한 적응 GP-PID의 구현과 동조)

  • Lee, Chang-Gu;Seol, O-Nam;Kim, Seong-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.197-203
    • /
    • 1997
  • In this paper, we present a GP-PID(Generalized Predictive PID) controller which has the same structure as a generalized predictive control with steady-state weighting. The proposed controller can perform better than the conventional PID controller because it includes intrinsic delay-time compensator. The PID tuning parameters and delay-time compensator are calculated by equating the two degree of freedom PID to a linear form of GPC. The proposed controller is combined with a supervisor for safe start and self-tuning. GP-PID controller has been tested for various numerical models and an experimental stirred tank heater. As a result, it was observed that the proposed controller shows a satisfactory performance for variable delay as well as stochastic disturbance.

  • PDF

MAC Algorithm of Sensor Networks to Service System (서비스 시스템에 따른 센서네트워크 MAC 알고리즘)

  • Park, Woo-Chool;Cho, Soo-Hyung;Lee, Sang-Hak;Kim, Dae-Whan;Yoo, June-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.225-227
    • /
    • 2004
  • A sensor networkis composed of a large number of sensor nodes, which are densely deployed either inside the phenomenon or very close to it. One of the most important constraints on sensor nodes is the low power consumption requirement. Sensor nodes carry limited, generally irreplaceable, power sources. Therefore, while traditional networks aim to achieve high quality of service (QoS) provisions, sensor network protocols must focus primarily on power conservation. This paper presents the characteristics of energy consuming, average delay in 802.11 MAC, S-MAC that is specifically designed for wireless sensor networks. We analyze the energy consuming state in the 802.11 MAC in the simulation topology nodes, and measure average delay in 802.11 and S-MAC. Energy efficiency is the primary goal in this protocol design. 802.11 MAC is more efficient than S-MAC in the average delay, throughput. However S-MAC is an energy efficient protocol, a tradeoff between energy efficiency and delay.

  • PDF

A Method for Reducing Delay in Networked Multi-User Games (머드형 게임의 구조 및 동기화 방법)

  • 안양재;윤수미;김상철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1697-1700
    • /
    • 2003
  • The multi-user online game is a typical example of networked graphic applications. Increasing the reality of such a game requires the minimization of problems due to the network delay. In this paper, we propose a game architecture that reduces the network delay needed for message transfer, and a method for synchronization of game states in clients . The proposed game architecture is region proxy-based, and it can require a less network delay than a conventional client-server style that is usually used in commercial games. In our synchronization method, messages are processed in a batch-mode style and the number of rollbacks needed for synchronization significantly decreases. Our experiment shows that our method provides better performance than previous TSS (Trailing State Synchronization).

  • PDF

Sliding Mode Control with Uncertainty Adaptation for Uncertain Input-Delay Systems (시간지연 시스템에서의 불확실성 추정을 갖는 슬라이딩 모드제어)

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.963-967
    • /
    • 2000
  • This paper deals with a sliding mode control with uncertainty adaptation for the robust stabilization of input-delay systems with unknown uncertainties. A sliding surface including a state predictor is employed to compensate for the effect of the input delay. The proposed method does not need a priori knowledge of upper bounds on the norm of uncertainties, but estimates those upper bounds by adaptation laws based on the sliding surface. Then, a robust control law with the uncertainty adaptation is derived to ensure the existence of the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

Robust and Non-fragile H Control for Descriptor Systems with Parameter Uncertainties and Time Delay

  • Kim, Jong-Hae;Oh, Do-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • This paper describes a robust and non-fragile H controller design method for descriptor systems with parameter uncertainties and time delay, as well as a static state feedback controller with multiplicative uncertainty. The controller existence condition, as well as its design method, and the measure of non-fragility in the controller are proposed using linear matrix inequality(LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile H controller guarantees the asymptotic stability and disturbance attenuation of the closed loop systems within a prescribed degree in spite of parameter uncertainties, time delay, disturbance input and controller fragility.

Improved Response of Time-Delay System with Integrator (적분기를 갖는 시간지연 시스템의 응답특성 개선)

  • Lee, Suk-Won;Yang, Seung-Hyun;Lee, Kyu-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.930-932
    • /
    • 1999
  • Recently a new modified Smith predictor is proposed for a time-delay system with an integrator. It is shown that the approximate model yields the zero-steady state error and the disturbance compensator improved the transient response. But in case of mismatch between the plant's time-delay and model's time-delay, the overall response is not satisfactory. In this paper, it is proposed that the proper pole is added to the new modified smith predictor to improve the overall response.

  • PDF

Consensus of Linear Multi-Agent Systems with an Arbitrary Network Delay (임의의 네트워크 지연을 갖는 선형 다개체시스템의 일치)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.517-522
    • /
    • 2014
  • This paper investigates the consensus problem for linear multi-agent systems with an arbitrary network delay. The sufficient conditions for a state consensus of linear multi-agent systems are provided by using linear matrix inequalities. Moreover, it is shown that under the proposed protocol, the consensus can be achieved even in the presence of an arbitrarily large network delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

A Novel Algebraic Framework for Analyzing Finite Population DS/SS Slotted ALOHA Wireless Network Systems with Delay Capture

  • Kyeong, Mun-Geon
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.127-145
    • /
    • 1996
  • A new analytic framework based on a linear algebra approach is proposed for examining the performance of a direct sequence spread spectrum (DS/SS) slotted ALOHA wireless communication network systems with delay capture. The discrete-time Markov chain model has been introduced to account for the effect of randomized time of arrival (TOA) at the central receiver and determine the evolution of the finite population network performance in a single-hop environment. The proposed linear algebra approach applied to the given Markov problem requires only computing the eigenvector of the state transition matrix and then normalizing it to have the sum of its entries equal to 1. MATLAB computation results show that systems employing discrete TOA randomization and delay capture significantly improves throughput-delay performance and the employed analysis approach is quite easily and staightforwardly applicable to the current analysis problem.

  • PDF

A Stability Analysis Scheme for a Class of First-Order Nonlinear Time-Delay Systems (일종의 일차 비선형 시간 지연 시스템을 위한 안정성 분석 방법)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.554-557
    • /
    • 2008
  • We analyze the stability property of a class of nonlinear time-delay systems with time-varying delays. We present a time-delay independent sufficient condition for the global asymptotic stability. In order to prove the sufficient condition, we exploit the inherent property of the considered systems instead of applying the Krasovskii or Razumikhin stability theory that may cause the mathematical difficulty of analysis. We prove the sufficient condition by constructing two sequences that represent the lower and upper bound variations of system state in time, and showing the two sequences converge to an identical point, which is the equilibrium point of the system. The simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.

Model Predictive Control for Input Constrained Systems with Time-varying Delay (시변 시간지연을 가지는 입력제한 시스템의 모델예측제어)

  • Lee, S.M.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1019-1023
    • /
    • 2012
  • This paper considers a model predictive control problem of discrete-time constrained systems with time-varying delay. For this problem, a delay dependent state feedback control approach is used to achieve asymptotic stabilization of systems with input constraints. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find cost monotonicity condition of the model predictive control algorithm which guarantee the closed loop stability. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.