• Title/Summary/Keyword: state vector

Search Result 944, Processing Time 0.024 seconds

Development of Squat Posture Guidance System Using Kinect and Wii Balance Board

  • Oh, SeungJun;Kim, Dong Keun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.74-83
    • /
    • 2019
  • This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.

Medical Image Encryption based on C-MLCA and 1D CAT (C-MLCA와 1차원 CAT를 이용한 의료 영상 암호화)

  • Jeong, Hyun-Soo;Cho, Sung-Jin;Kim, Seok-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.439-446
    • /
    • 2019
  • In this paper, we propose a encryption method using C-MLCA and 1D CAT to secure medical image for efficiently. First, we generate a state transition matrix using a Wolfram rule and create a sequence of maximum length. By operating the complemented vector, it converts an existing sequence to a more complex sequence. Then, we multiply the two sequences by rows and columns to generate C-MLCA basis images of the original image size and go through a XOR operation. Finally, we will get the encrypted image to operate the 1D CAT basis function created by setting the gateway values and the image which is calculated by transform coefficients. By comparing the encrypted image with the original image, we evaluate to analyze the histogram and PSNR. Also, by analyzing NPCR and key space, we confirmed that the proposed encryption method has a high level of stability and security.

Classifying Severity of Senior Driver Accidents In Capital Regions Based on Machine Learning Algorithms (머신러닝 기반의 수도권 지역 고령운전자 차대사람 사고심각도 분류 연구)

  • Kim, Seunghoon;Lym, Youngbin;Kim, Ki-Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.25-31
    • /
    • 2021
  • Moving toward an aged society, traffic accidents involving elderly drivers have also attracted broader public attention. A rapid increase of senior involvement in crashes calls for developing appropriate crash-severity prediction models specific to senior drivers. In that regard, this study leverages machine learning (ML) algorithms so as to predict the severity of vehicle-pedestrian collisions induced by elderly drivers. Specifically, four ML algorithms (i.e., Logistic model, K-nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM)) have been developed and compared. Our results show that Logistic model and SVM have outperformed their rivals in terms of the overall prediction accuracy, while precision measure exhibits in favor of RF. We also clarify that driver education and technology development would be effective countermeasures against severity risks of senior driver-induced collisions. These allow us to support informed decision making for policymakers to enhance public safety.

A Study on a Binary Random Sequence Generator with Two Characteristic Polynomials (두개의 특성 다항식으로 구성된 이진 난수열 발생기에 관한 연구)

  • 김대엽;주학수;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.77-85
    • /
    • 2002
  • A Research of binary random sequence generator that uses a linear shift register had been studied since the 1970s. These generators were used in stream cipher. In general, the binary random sequence generator consists of linear shift registers that generate sequences of maximum period and a nonlinear filter function or a nonlinear combination function to generate a sequence of high linear complexity. Therefore, To generate a sequence that have long period as well as high linear complexity becomes an important factor to estimate safety of stream cipher. Usually, the maximum period of the sequence generated by a linear feedback shift register with L resistors is less than or equal to $2^L$-1. In this paper, we propose new binary random sequence generator that consist of L registers and 2 sub-characteristic polynomials. According to an initial state vector, the least period of the sequence generated by the proposed generator is equal to or ions than it of the sequence created by the general linear feedback shift register, and its linear complexity is increased too.

Seepage-Advection-Dispersion Numerical Analysis of Offshore Rubble Mound Revetment Landfill Under Transient Flow (비정상류 조건에서 경사식호안매립장에 대한 침투이류 분산해석)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • This study analyzes contaminant movement under transient flow in a rubble mound revetment offshore waste landfill barrier system that prevents contaminant runoff. The barrier system consists of bottom layer and side barrier. For the bottom layer system, impermeable clay layer is used. For the side barrier system, the HDPE barrier sheet (primary element) plays the main role, and the intermediate protection layer (supplementary element) is responsible for the barrier. Seepage, advection, dispersion numerical analysis was carried out using SEEP / W and CTRAN / W programs. As a result, under abnormal conditions considering the fluctuation in tidal range, the volume and direction of the flow velocity vector of the pore water change with time and the dispersion concentration of the contaminant changes. When comparing the case of 2 m tidal range and 8 m tidal range, the larger the tide value, the higher the concentration of contaminant under abnormal conditions. It was found that the rate of change of the concentration of the contaminant changed depending on the change in the tidal range, and as a result, the outflow of the pollutant was smaller than that in the steady flow state.

Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection (Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가)

  • Shin, Jaeyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.268-276
    • /
    • 2021
  • Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

Privacy-preserving and Communication-efficient Convolutional Neural Network Prediction Framework in Mobile Cloud Computing

  • Bai, Yanan;Feng, Yong;Wu, Wenyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4345-4363
    • /
    • 2021
  • Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to provide customer prediction services, has been widely deployed on mobile cloud computing (MCC). Such services raise privacy concerns since customers need to send private data to untrusted service providers. In this paper, we devote ourselves to building an efficient protocol to classify users' images using the convolutional neural network (CNN) model trained and held by the server, while keeping both parties' data secure. Most previous solutions commonly employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) hardness or two-party secure computation protocols to achieve it. However, they have limitations on large communication overheads and costs in MCC. To address this issue, we present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic encryption scheme with packing and unpacking methods (LeHE). It supports fast homomorphic operations such as vector-matrix multiplication and addition. Then we propose a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers while exploiting the data shuffling technique to perform non-linear operations. Finally, we implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN framework in terms of response time, usage cost, and communication overhead compared to the state-of-the-art methods in the mobile cloud computing environment.

A Novel Grasshopper Optimization-based Particle Swarm Algorithm for Effective Spectrum Sensing in Cognitive Radio Networks

  • Ashok, J;Sowmia, KR;Jayashree, K;Priya, Vijay
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.520-541
    • /
    • 2023
  • In CRNs, SS is of utmost significance. Every CR user generates a sensing report during the training phase beneath various circumstances, and depending on a collective process, either communicates or remains silent. In the training stage, the fusion centre combines the local judgments made by CR users by a majority vote, and then returns a final conclusion to every CR user. Enough data regarding the environment, including the activity of PU and every CR's response to that activity, is acquired and sensing classes are created during the training stage. Every CR user compares their most recent sensing report to the previous sensing classes during the classification stage, and distance vectors are generated. The posterior probability of every sensing class is derived on the basis of quantitative data, and the sensing report is then classified as either signifying the presence or absence of PU. The ISVM technique is utilized to compute the quantitative variables necessary to compute the posterior probability. Here, the iterations of SVM are tuned by novel GO-PSA by combining GOA and PSO. Novel GO-PSA is developed since it overcomes the problem of computational complexity, returns minimum error, and also saves time when compared with various state-of-the-art algorithms. The dependability of every CR user is taken into consideration as these local choices are then integrated at the fusion centre utilizing an innovative decision combination technique. Depending on the collective choice, the CR users will then communicate or remain silent.