• Title/Summary/Keyword: starved cell

Search Result 48, Processing Time 0.028 seconds

Optimization of Procedure for Efficient Gene Transfer into Porcine Somatic Cells with Lipofection

  • Kim, D.Y.;McElroy, S.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.648-656
    • /
    • 2008
  • The objective of this study was to establish conditions for transfection of a foreign gene into somatic cells using cationic lipid reagents and to evaluate the effects of transfection on in vitro development of somatic cell nuclear transfer (SCNT) embryos. Green fluorescent protein (GFP) gene was used as a foreign gene and a non-transfected somatic cell was utilized as a control karyoplast. Monolayers of porcine cells were established and subsequently transfected with a GFP-expressing gene (pEGFP-N1) using three types of transfection reagents (LipofectAMINE PLUS, FuGENE 6 or ExGen500). Donor cells used for SCNT included transfected fetal or adult fibroblasts and oviduct epithelial cells, either serum-fed or serum-starved. Oocytes matured in vitro for 42 h were reconstructed with either transfected or non-transfected porcine somatic cells by electric fusion and activation using a single DC pulse of 1.8 kV/cm for $30{\mu}s$ in $Ca^{2+}$ and $Mg^{2+}-containing$ 0.26 M mannitol solution. Reconstructed oocytes were subsequently cultured in NCSU-23 medium for 168 h and the developmental competence and cell number in blastocyst were compared. There were no significant differences (P>0.05) in fusion, cleavage rates or development to the blastocyst stage between non-transfected, transfected, serum-fed and serum-starved cells. However, the rates of GFP-expressing blastocysts were higher in the FuGENE 6 group (71.4%) among transfection reagents and in the fetal fibroblasts group (70.4%) for donor cells. These results indicate that fetal fibroblasts transfected with FuGENE 6 can be used as donor cells for porcine SCNT and that GFP gene can be safely used as a marker of foreign genes in porcine transgenesis.

Physiological Function of a DNA-Binding Protein from Starved Cells in Combating Diverse External Stresses in Escherichia coli (대장균 세포 내 다양한 외부 스트레스에 대한 DPS 단백질의 생리적 기능)

  • Lee, Joo Hyeong;Cheong, Su Jin;Oh, Hun Taek;Kim, Woe Yeon;Jung, Young Jun
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.479-486
    • /
    • 2013
  • The DNA-binding protein from starved cells (DPS), originally identified as a DNA binding protein in Escherichia coli, is known to play an important role in DNA protection. The aim of this study was to evaluate the functional roles of DPS in E. coli against various kinds of external stresses by comparing the properties of wild-type E. coli cells and dps knockout mutant E. coli (${\Delta}dps$) cells. Under various stress conditions, we measured the cell growth of the wild-type E. coli and the dps knockout mutant E. coli (${\Delta}dps$) cells using a UV spectrophotometer. The growth rate of the cells was compared to investigate the functional roles of the DPS protein in E. coli. In comparison to the properties of the wild-type E. coli cells, the dps knockout mutant E. coli (${\Delta}dps$) cells showed highly sensitive phenotypes under various stress conditions, such as heat shock, acidic pH, nutrient deficiency, and different concentrations of reactive oxygen species (ROS), suggesting that DPS plays key roles in E. coli in combating diverse external stresses. The DPS DNA-binding protein in E. coli plays crucial roles in bacterial cell growth and in the protection of the cells from environmental stresses by tightly binding and preserving their DNA molecules.

An Analog Multi-phase DLL for Harmonic Lock Free (Harmonic Locking을 제거하기 위한 아날로그 Multi- phase DLL 설계)

  • 문장원;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.281-284
    • /
    • 2001
  • This paper describes an analog multi-phase delay-locked loop (DLL) to solve the harmonic lock problem using current-starved inverter and shunt-capacitor delay cell. The DLL can be used not only as an internal clock buffer of microprocessors and memory It's but also as a multi-phase clock generator for gigabit serial interfaces. The proposed circuit was simulated in a 0.25${\mu}{\textrm}{m}$ CMOS technology to solve harmonic lock problem and to realize fast lock-on time and low-jitter we verified time interval less than 40 ps as the simulation results.

  • PDF

GROWTH AND DIFFERENTIATION OF CONDUCTING AIRWAY EPITHELIAL CELLS IN CULTURE

  • Reen Wu;Zhao, Yu-Hua;Mary M. J. Chang
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.80-104
    • /
    • 1996
  • The development of routine techniques for the isolation and in vitro maintenance of conducting airway epithelial cells in a differentiated state provides an ideal model to study the factors involved in the regulation of the expression of mucocilicary differentiation. Several key factors and conditions have been identified. These factors and conditions include the use of biphasic culture technique to achieve mucociliary differentiation and the use of such stimulators, the thickness of collagen gel substratum, the calcium level, and vitamin A, and such inhibitors, the growth factors EGF and insulin, and steroid hormones, for mucous cell differentiation. Using the defined culture medium, the life cycle of the mucous cell population in vitro was investigated. It was demonstrated that the majority of the mucous cell population in primary cultures is not involved in DNA replication. However, the mucous cell type is capable of self-renewal in culture and this reproduction is vitamin A dependent. furthermore, differentiation from non-mucous cell type to mucous cell type can be demonstrated by adding back a positive regulator such as vitamin A to the “starved” culture. Cell kinetics data suggest that vitamin A-dependent mucous cell differentiation in culture is a DNA replication-independent process and the process is inhibited by TGF-${\beta}$1.

  • PDF

Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

  • Zhou, Caihong;Shen, Qi;Xue, Jinglun;Ji, Chaoneng;Chen, Jinzhong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular $TTRAP^{E152A}$, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis.

Effect of starvation on tissues in Far Eastern catfish(Silurus asotus) (메기(Silurus asotus) 기아 시 조직학적 변화)

  • Goo, In Bon;Kim, Young Soo;Park, In-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.315-322
    • /
    • 2020
  • A 210-day experiment was conducted to examine the effects of starvation on survival, the gonadosomatic index (GSI), hepatosomatic index (HSI), and the intestinosomatic index (ISI), and histological changes in the renal tubule epithelium, midgut epithelium, and hepatocytes in Far Eastern catfish (Silurus asotus). The survival rate decreased to 92.2±0.47% in the fed group and 74.4±2.59% in the starved group during the 210-day experimental period. GSI, HSI, and ISI were lowest in the starved group (p<0.05). The hepatocyte nuclear area, hepatocyte cell area, the nuclear height of the midgut epithelium, and the nuclear height of the kidney were highest in the fed group (p<0.05). The hepatocyte nuclear area, nuclear height of the midgut epithelium, and nuclear height of the kidney were lowest in the starved group(p<0.05). The numbers of melano-macrophages (MMs) found in the kidney cells increased during starvation in this species. This suggests that thinner body cavity regions, the contraction of hepatocyte nuclear sites, and the spreading of kidney cell MMs in this species could be used as alternative indicators for identifying starvation conditions. Therefore, the results from our study provide accurate indications of the nutritional status of Far Eastern catfish.

The Fission Yeast Hda1p Functions on the Regulation of Proper Cell Division

  • Hwang, Hyung-Seo;Suh, Na-Young;Song, Ki-Won
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.263-267
    • /
    • 2000
  • We cloned $hda1^+$ (histone deacetylase 1) of fission yeast Schizosaccharomyces pombe. The hda1 of S. pombe was previously reported to encode for an active histone deacetylase (Rundlett et al., 1996; Olsson et al., 1998). The $hda1^+$ is phylogenetically related to the new open reading frame HOS2 of Saccharomyces cerevisiae and only shows a partial homology to the well-known histone deacetylase subclasses, RPD3 and HDA1. A single hda1 mRNA of 1.8 kb was detected at the same level in actively growing and nitrogen-starved cells. When highly over-expressed in S. pombe from an inducible promoter, $hda1^+$ inhibited cell proliferation and caused defects in morphology and cell division. The increased histone deacetylase activity was detected in hdar over-expressing cells. These results suggest that the Hda1p should function on the regulation of cell division possibly by (Allfrey, 1966) direct deacetylation of cytoskeletal (Wade et al., 1997) and cell division regulatory proteins, (Wolffe, 1997) or by controlling their gene expressions.

  • PDF

Effects of Wolgukwhan Methanol Extract on Oxidative Liver Injury (월국환(越鞠丸) 메탄올 추출물이 산화적 간손상에 미치는 효과)

  • Moon Jin-Young
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.85-95
    • /
    • 2002
  • Objectives: In traditional medicine, Wolgukwhan has been used for the treatment of digestive system disease, such as indigestion, brash, ructation, nausea and vomiting. This study was purposed to investigate the effects of Wolgukwhan methnol extract (WGWM) on oxidative liver cell injury. Methods: In vivo assay, we administerated acetaminophen(500mg/kg, i.p.) to starved mice 24hrs after pretreatment of WGWM for 6days. In the liver homogenates, lipid peroxide and glutathione(GSH) levels were measured. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GPX), glutathione S-transferase(GST) were measured in the hepatic mitochondrial and cytosolic fractions. Results: In vivo administeration of WGWM showed effective inhibition of acetaminophen induced lipid peroxidation and elevations of glutathione level. The acetaminophen treatment resulted in a decrease of catalase, GPX and GST activities. By contrast, WGWM pretreatment increased compare to those of untreated groups. Conclusions: These results suggested that WGWM might protect against lipid peroxidation by free radicals, destruction of hepatic cell membranes.

  • PDF

Influence of Starvation and Humic Acid on Soil Microbial 2- Hydroxypyridine Metabolism (토양 미생물의 2-hydroxypyridine 대사에 미치는 기아상태와 부식산의 영향)

  • 황선형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.13-23
    • /
    • 1999
  • In this research, 3-hydroxypyridine(2-HP) metabolic ability of starving Arthrobacter crystallopoietes cell and the effect of humic acid on the metabolism of this starving cell were evaluated. 2-HP metabolic ability of exponential phase cell (acclimated cell) was much higher than that of lag phase cell (unacclimated cell) during starvation period. After 3 days of starvation, 2-HP half-life of the acclimated cell was 14 hours and that of the unacclimated cell was 46.5 hours. Humic acid enhanced the stability of 2-HP monooxygenase of starving co]1 and, after 2 days of starvation, the residual activity rate of this enzyme of the microbial cell starved in humic acid solution was 12% while the rate for control condition was 1.5%. After 14 days of starvation, 2-HP half-life for control condition was 43 hours and that for humic acid condition was 1.25 hour.

  • PDF

Effect of Resveratrol on Oral Cancer Cell Invasion Induced by Lysophosphatidic Acid

  • Kim, Jin Young;Cho, Kyung Hwa;Lee, Hoi Young
    • Journal of dental hygiene science
    • /
    • v.18 no.3
    • /
    • pp.188-193
    • /
    • 2018
  • The aim of the current study was to demonstrate the potential therapeutic efficacy of resveratrol in oral cancer patients. Lysophosphatidic acid (LPA) intensifies cancer cell invasion and metastasis, whereas resveratrol, a natural polyphenolic compound, possesses antitumor activity, suppressing cell proliferation and progression in various cancer cell lines (ovarian, gastric, oral, pancreatic, colon, and prostate cancer cells). In addition, resveratrol has been identified as an inhibitor of LPA-induced proteolytic enzyme expression and ovarian cancer invasion. Furthermore, resveratrol was shown to inhibit oral cancer cell invasion by downregulating hypoxia-inducible factor $1{\alpha}$ and vascular endothelial growth factor expression. Recently, we demonstrated that LPA is important for the expression of transcription factors TWIST and SLUG during epithelial-mesenchymal transition (EMT) in oral squamous carcinoma cells. In this study, we treated serum-starved cultures of oral squamous carcinoma cell line YD-10B with resveratrol for 24 hours prior to stimulation with LPA. To identify an optimal resveratrol concentration that does not induce apoptosis in oral squamous carcinoma cells, we determined the toxicity of resveratrol in YD-10B cells by assessing their viability using the MTT assay. Another assay was performed using Matrigel-coated cell culture inserts to detect oral cancer cell invasion activity. Immunoblotting was applied for analyzing protein expression of SLUG, TWIST1, E-cadherin, and GAPDH. We demonstrated that resveratrol efficiently inhibited LPA-induced oral cancer cell EMT and invasion by downregulating SLUG and TWIST1 expression. Therefore, resveratrol may potentially reduce oral squamous carcinoma cell invasion and metastasis in oral cancer patients, improving their survival outcomes. In summary, we identified new targets for the development of therapies against oral cancer progression and characterized the therapeutic potential of resveratrol for the treatment of oral cancer patients.