Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.4.479

Physiological Function of a DNA-Binding Protein from Starved Cells in Combating Diverse External Stresses in Escherichia coli  

Lee, Joo Hyeong (Senior High School of Gyeongsang National University)
Cheong, Su Jin (Senior High School of Gyeongsang National University)
Oh, Hun Taek (Division of Applied Life Science, Gyeongsang National University)
Kim, Woe Yeon (Division of Applied Life Science, Gyeongsang National University)
Jung, Young Jun (Division of Applied Life Science, Gyeongsang National University)
Publication Information
Journal of Life Science / v.23, no.4, 2013 , pp. 479-486 More about this Journal
Abstract
The DNA-binding protein from starved cells (DPS), originally identified as a DNA binding protein in Escherichia coli, is known to play an important role in DNA protection. The aim of this study was to evaluate the functional roles of DPS in E. coli against various kinds of external stresses by comparing the properties of wild-type E. coli cells and dps knockout mutant E. coli (${\Delta}dps$) cells. Under various stress conditions, we measured the cell growth of the wild-type E. coli and the dps knockout mutant E. coli (${\Delta}dps$) cells using a UV spectrophotometer. The growth rate of the cells was compared to investigate the functional roles of the DPS protein in E. coli. In comparison to the properties of the wild-type E. coli cells, the dps knockout mutant E. coli (${\Delta}dps$) cells showed highly sensitive phenotypes under various stress conditions, such as heat shock, acidic pH, nutrient deficiency, and different concentrations of reactive oxygen species (ROS), suggesting that DPS plays key roles in E. coli in combating diverse external stresses. The DPS DNA-binding protein in E. coli plays crucial roles in bacterial cell growth and in the protection of the cells from environmental stresses by tightly binding and preserving their DNA molecules.
Keywords
E. coli; external stresses; DNA-binding Protein from Starved cells (DPS); cell growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jordan, K. N., Oxford, L. and O'Byrne, C. P. 1999. Survival of low-pH stress by Escherichia coli O157:H7: correlation between alterations in the cell envelope and increased acid tolerance. Appl Environ Microbiol 65, 3048-3055.
2 Lindahl, T. and Nyberg, B. 1972. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610-3618.   DOI   ScienceOn
3 Malone, A. S., Chung, Y. K. and Yousef, A. E. 2006. Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 72, 2661-2671.   DOI   ScienceOn
4 Martinez, A. and Kolter, R. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein DPS. J Bacteriol 179, 5188-5194.
5 McGhee, J. D. and Felsenfeld, G. 1980. Nucleosome structure. Annu Rev Biochem 49, 1115-1156.   DOI   ScienceOn
6 Miller, J. H. 1972. Experiments in olecular Genetics. Cold Spring Harbor Labortory Cold Spring Hatbor NY 466.
7 Nair, S. and Finkel, S. E. 2004. DPS protects cells against multiple stresses during stationary phase. J Bacteriol 186, 4192-4198.   DOI   ScienceOn
8 Ren, B., Tibbelin, G., Kajino, T., Asami, O and Ladenstein, R. 2003. The multi-layered structure of DPS with a novel di-nuclear ferroxidase center. J Mol Biol 329, 467-477.   DOI   ScienceOn
9 Saris, Per E. J., Paulin, Lars G. and Uhlen, Mathias.1990. Direct amplication of DNA from colonies of Bacillus subtilis and Escherichia coli by the polymerase chain reaction. J Microbiol Methods 11, 121-126.   DOI   ScienceOn
10 Schmidt, R., Zahn, R., Bukau, B. and Mogk, A. 2009. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol Microbiol 72, 506-517.   DOI   ScienceOn
11 Storz, G. and Imlay, J. A. 1999. Oxidative stress. Curr Opin Microbiol 2, 188-194.   DOI   ScienceOn
12 Wolf, S. G., Frenkiel, D., Arad, T., Finkel, S. E., Kolter, R. and Minsky, A. 1999. DNA protection by stress-induced biocrystallization. Nature 400, 83-85.   DOI   ScienceOn
13 Yu, M. J., Ren, J., Zeng, Y. L., Zhou, S. N. and Lu, Y. J. 2009. The Legionella pneumophila DPS homolog is regulated by iron and involved in multiple stress tolerance. J Basic Microbiol 49, S79-S86.   DOI   ScienceOn
14 Zhao, G., Ceci, P., Ilari, A., Giangiacomo, L., Laue, T. M., Chiancone, E. and Chasteen, N. D. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. J Biol Chem 277, 27689-27696.   DOI   ScienceOn
15 Almiron, M., Link, A. J., Furlong, D. and Kolter, R. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646-2654.   DOI   ScienceOn
16 Altuvia, S., Almiron, M., Huisman, G., Kolter, R. and Storz, G. 1994. The DPS promoter is activated by OxyR during growth and by IHF and ${\sigma}^s$ in stationary phase. Mol Microbiol 13, 265-272.   DOI   ScienceOn
17 Chiancone, E. and Ceci, P. 2010. Role of DPS (DNA-binding proteins from starved cells) aggregation on DNA. Front Biosci 15, 122-131.   DOI
18 Brown, J. L., Ross, T., McMeekin, T. A. and Nichols, P. D. 1997. Acid habituation of Escherichia coli and the potential role of cytoplasmic fatty acids in low pH tolerance. Int J Food Microbiol 37, 163-173.   DOI   ScienceOn
19 Calhoun, L. N. and Kwon, Y. M. 2011. Structure, function and regulation of the DNA-binding protein DPS and its role in acid and oxidative stress resistance in Escherichia coli. J Appl Microbiol 110, 375-386.   DOI   ScienceOn
20 Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. and Foster, J. W. 1999. Control of acid resistance in Escherichia coli. J Bacteriol 181, 3525-3535.
21 Chiancone, E. and Ceci, P. 2010. The multifaceted capacity of DPS proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta 1800, 798-805.   DOI   ScienceOn
22 Choi, S. H., Baumler, D. J. and Kaspar, C. W. 2000. Contribution of DPS to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 66, 3911-3916.   DOI   ScienceOn
23 Drlica, K. and Rouviere-Yaniv, J. 1987. Histonelike proteins of bacteria. Microbiol Rev 51, 301-319.
24 Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R. and Hogle, J. M. 1998. The crystal structure of DPS, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5, 294-303.   DOI   ScienceOn
25 Haikarainen, T. and Papaqeorqiou, A. C. 2010. DPS-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci 67, 341-351.   DOI
26 Hong, Y., Wang, G. E. and Maier, R. J. 2006. Helicobacter hepaticus DPS protein plays an important role in protecting DNA from oxidative damage. Free Radic Res 40, 597-605.   DOI   ScienceOn
27 Jeong, K. C., Hung, K. F., Baumler, D. J., Byrd, J. J. and Kaspar, C. W. 2008. Acid stress damage of DNA is prevented by DPS binding in Escherichia coli O157:H7. BMC Microbiol 8, 181.   DOI   ScienceOn
28 Ishikawa, T., Mizunoe, Y., Kawabata, S., Takade, A., Harada, M., Wai, S. N. and Yoshida, S. 2003. The iron-binding protein DPS confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185, 1010-1017.   DOI
29 Jeong, K. C., Baumler, D. J. and Kaspar, C. W. 2006. DPS expression in Escherichia coli O157:H7 requires an extended-10 region and is affected by the cAMP receptor protein. Biochim Biophys Acta 1759, 51-59.   DOI   ScienceOn