• Title/Summary/Keyword: starch-fermentation

Search Result 354, Processing Time 0.021 seconds

Batch Kinetics of Exo-polysaccharide Production by Submerged Cultivation of Ganoderma lucidum (영지의 액체배양에 의한 세포외 다당 생산의 동력학적 특성)

  • Lee, Shin-Young;Lee, Hak-Su;Park, Heung-Cho
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.304-311
    • /
    • 1999
  • Batch kinetics during the exo-polysaccharide (EPS) fermentation of Ganoderma lucidum was investigated as a function of different substrates (glucose and starch), substrate concentration $(1{\sim}7%,\;w/v)$ and subculture (3 times). Logistic model for mycelial growth fitted the experimental data better than Monod and two thirds power model. The Luedeking-Pirt equation was adequate to fit the kinetic data of product formation and substrate consumption. The EPS production was strongly non-growth associated, although it was mixed type. The product formation and sustrate consumption by growth associated mechanism decreased as the concentration of glucose increased, while those of the non-growth associated mechanism increased. However, starch medium increased the growth associated and non-growth associated substrate consumption indicating higher availability of substrate. Also, batch culture in starch medium showed the higher specific growth rate and stability during subculture than those in glucose medium. In conclusion, the enhanced EPS production and stability in the subculture was found to be remarkably improved by use of starch as sole carbon source in medium. The maximum mycelium dry weight and EPS production of 9.463 and 10.410 g/l, respectively, were obtained after shake culture of 7 days at $30^{\circ}C$ from the media containing 7% starch.

  • PDF

Proximate Compositions Changed Before and After Fermentation of Rice Spent Water (발효 전후 쌀뜨물의 일반성분 변화)

  • Kim, Min-Ju;Park, Sung-Soo;Kim, Dong-Ho;Kim, Keun-Sung
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.192-197
    • /
    • 2011
  • Rice spent water (RSW) is generated when rice is rinsed before cooking. RSW has been discarded into sewerages due to its low usage in our daily life and become a major domestic wastewater for many years. But RSW can be used as a value-added resource because it contains various beneficial bioactive components. Therefore, fermented rice spent water (FRSW) has been already produced in our previous value-added fermentation process. In this study, proximate compositions and contents of other typical fermentation products were compared between RSW and FRSW. Both RSW and FRSW contain approximately 99.3% moisture and 0.7% total solids. Compared to those of RSW on a dry basis, carbohydrate content of FRSW was decreased by 44.8% and crude protein, lipid, and ash contents of FRSW were increased by 16.4%, 18.8%, and 36.6%, respectively. In addition, starch granules of RSW were intact as those of rice flour were, but those of FRSW were not. RSW did not have lactic acid, but FRSW had 212.13 and 181.25 g/kg D- and L-lactic acid, respectively. Free amino and ammoniacal nitrogen contents of FRSW were 12 and 7 times higher than those of RSW, respectively. Lactic acid, free amino, and ammonical nitrogen contents were considered to be increased in FRSW because carbohydrates could be disintegrated into lactic acids and proteins into free amino or ammoniacal nitrogens during the fermentation process.

Enhanced acidogenic fermentation of food waste (II) : Effect of controlling dilution rate (음식물쓰레기를 처리하는 산발효조의 효율 향상 연구(II) : 희석율 변화의 효과)

  • Shin, Hang-Sik;Han, Sun-Kee;Song, Young-Chae;Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.118-123
    • /
    • 2000
  • Food waste results in various problems such as decay, odors and leachate in collection, transportation and landfill due to the high volatile solids and moisture content. Acidogenic fermentation of food waste is influenced by the environmental conditions such as pH, retention time, etc. Each component of food waste is degraded under the different environmental conditions. Starch, cellulose and protein have their own optimum pHs and retention times for degradation. The degradation of starch increases at low pH, cellulose with increasing retention time, and protein with increasing retention time as well as approaching neutral pH. These mean that the degradation of food waste can be enhanced by adjusting the environmental conditions of acidogenic fermentation. The efficiency of acidification increased from 71.2 to 81.1% by controlling dilution(D) rate from 3.0 to $1.0d^{-1}$ depending on the state of the fermentation. The main component of the acidified product was shifted from butyric to acetic acid, indicating that the increase of acidification was mainly caused by the enhanced degradation of vegetables and meats.

  • PDF

Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks (전분 기질에 대한 Saccharomyces cerevisiae CHY1077과 Zymomonas mobilis CHZ2501의 에탄올 발효 비교)

  • Choi, Giwook;Kang, Hyunwoo;Kim, Youngran;Chung, Bongwoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.977-982
    • /
    • 2008
  • The production of ethanol by microbial fermentation as an alternative energy source has been of interest because of increasing oil price. Saccharomyces cerevisiae and Zymomonas mobilis are two of the most widely used ethanol producers. In this study, characteristics of ethanol fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 was compared. Brown rice, naked barley, and cassava were selected as representatives of the starch-based raw materials commercially available for ethanol production. The volumetric ethanol productivities by Saccharomyces cerevisiae from brown rice, naked barley and cassava were $0.68g/l{\cdot}h$, $1.03g/l{\cdot}h$ and $1.28g/l{\cdot}h$ respectively. But for the Zymomonas mobilis, $2.19g/l{\cdot}h$(brown rice), $2.60g/l{\cdot}h$(naked barley) and $3.12g/l{\cdot}h$(cassava) were obtained. Zymomonas mobilis was more efficient strain for ethanol production than S. cerevisiae.

Production of Protein-bound Polysaccharides by Solid-substrate Fementation of Lentinus edodes (표고버섯의 고체배양에 의한 단백 다당류 생산)

  • 박경숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.667-672
    • /
    • 1998
  • The possibility of solid-substrate fermentation of Lentinus edoes for the productin of protein-boud polysaccharides (PBP) was studied. Zeolite and orchid-pot soil were used as solid materials for the culture because of the desirable physical properties. Sucrose and starch were good carbon sources for the production of PBP by the solid-substrate fermentatin of L. edodes. Among the nitrogen source, bactosoyton was very effective for the PBP production. The optimum pH for solid-substrate fementation for the production of PBP was at pH of 5.5. The PBP production reached to 5∼5.5mg per 100g solid-substrate.

  • PDF

Isolation of Macrophage-activating Bifidobacterium for the Manufacture of Fermented Rice Products (쌀 발효제품 제조를 위한 마크로파지활성 비피더스균의 선발)

  • 차성관;홍석산;지근억;목철균;박종현
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.509-514
    • /
    • 1999
  • Forty seven amylolytic Bifidobacterium strains were isolated on starch-containing agar medium from the faecal samples of the various age groups of Korean. From these amyloytic Bifidobacterium spp., two strains of KFRI 1535, identified temporarily as Bifidobacterium longum, and KFRI 1550, identified as Bifidobacterium breve, showed great macrophage-stimulating activity for the production of tumor necrosis factor-$\alpha$ and inteleukin-6. As the cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration of $250\mu\textrm{g}$/ml. the strains which showed high cytokine-stimulating activity generally showed greater production of nitric oxide even though differences were less between strains. Selected Bifidobacterium strains were compared for their fermentation capability in saccharified rice solution and in apple pomace mixture.

  • PDF

Identification and Culture Conditon of an Actionomycetes Stranin Producing an Angiotensin Converting Enzyme Inhibitor (Angiotensin Converting Enzyme(ACE) 저해제를 생성하는 방선균 분리주의 동정 및 최적 발효조건)

  • Moon, Seong-Hoon;Ha, Sang-Chul;Lee, Dong-Sun;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.439-445
    • /
    • 1995
  • Identification of Actinomycetes isolate strain SH-8002, a producer of ACE inhibitor, based on procedures employed in the international Streptomyces project. The strain, designated as SH-8002, was identified as Streptomyces zoamyceticus SH-8002 based on its morphological, physiological, biochemical and chemotaxonomic characteristics. The ACE inhibitor produced by the strain was highly achieved in fermentation medium condition that was 1% soluble starch, 0.5% tryptone, 0.2% K$_{2}$HPO$_{4}$, 0.2% CaCO$_{3}$, 0.1% NaCl, pH 8.0 at 30$\circ$C for 144 hrs.

  • PDF

Isolation of Alcohol-tolerant Amylolytic Saccharomyces cerevisiae and Its Application to Alcohol Fermentation

  • Jung, He-Kyoung;Park, Chi-Duck;Bae, Dong-Ho;Hong, Joo-Heon
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1160-1164
    • /
    • 2008
  • An novel amylolytic yeast, Saccharomyces cerevisiae HA 27, isolated from nuruk, displayed resistance against high sugar (50% glucose) and alcohol (15%). Maximal production of amylolytic enzyme by S. cerevisiae HA 27 was achieved on 9 days of cultivation at the optimal temperature $20^{\circ}C$ and pH 6.0. The activity of amylolytic enzyme produced by S. cerevisiae HA 27 was stable, even at $70^{\circ}C$, and over a broad pH range (4.0-11.0). Also, the amylolytic enzyme of S. cerevisiae HA 27 showed optimal activity in pH 5.0 at $50^{\circ}C$. S. cerevisiae HA 27 exhibited 6.2%(v/v) alcohol fermentation ability using starch as a carbon source.

Identification of the Actinomycetes Strain No.1372, A Producer of Actinomycin $X_2$ (Actinomycin $X_2$를 생산하는 방선균 분리주 No.1372의 동정)

  • 하상철;홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.164-168
    • /
    • 1994
  • Identification of the Actinomycetes isolate strain No. 1372, a producer of Actinomycin X$_{2}$ was performed by using ISP method.l The strain, designated as No. 1372, was identified as Streptomyces floridae based on its morphological, physiological and biochemical characteristics. The highest production of the antibiotics by the strain was achieved in a fermentation medium containing soluble starch, yeast extract, (NH$_{4}$)SO$_{4}$, K$_{2}$HPO$_{4}$, NaCl$_{2}$, CaCO$_{3}$, and trace element.

  • PDF

Screening of Giberella sp. from the Korean Paddy Field for the roduction of Gibberellic Acid and its Cultural Properties (Gibberellic acid를 생산하는 분리주 Gibberella sp. 의 배양학적 특성)

  • 오영준
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.119-122
    • /
    • 1995
  • A different form from Gibberella fujikuroi was isolated from the paddy field of Naju area. The strain, designated as Y107, was identified as Gibberrella sp. based on its morphological, physiological, and biochemical characteristics. The highest production of Gibberellic acid by the strain was achieved in a fermentation medium containing corn starch, glucose, soybean oil, soybean meal, NH$_{4}$NO$_{3}$, K$_{2}$HPO$_{4}$, MgSO$_{4}$, and trace elements.

  • PDF