Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks

전분 기질에 대한 Saccharomyces cerevisiae CHY1077과 Zymomonas mobilis CHZ2501의 에탄올 발효 비교

  • Choi, Giwook (Changhae Institute of Cassava & Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Kang, Hyunwoo (Changhae Institute of Cassava & Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Kim, Youngran (Chonbuk National University, School of Chemical Engineering) ;
  • Chung, Bongwoo (Chonbuk National University, School of Chemical Engineering)
  • Received : 2008.07.11
  • Accepted : 2008.08.01
  • Published : 2008.10.31

Abstract

The production of ethanol by microbial fermentation as an alternative energy source has been of interest because of increasing oil price. Saccharomyces cerevisiae and Zymomonas mobilis are two of the most widely used ethanol producers. In this study, characteristics of ethanol fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 was compared. Brown rice, naked barley, and cassava were selected as representatives of the starch-based raw materials commercially available for ethanol production. The volumetric ethanol productivities by Saccharomyces cerevisiae from brown rice, naked barley and cassava were $0.68g/l{\cdot}h$, $1.03g/l{\cdot}h$ and $1.28g/l{\cdot}h$ respectively. But for the Zymomonas mobilis, $2.19g/l{\cdot}h$(brown rice), $2.60g/l{\cdot}h$(naked barley) and $3.12g/l{\cdot}h$(cassava) were obtained. Zymomonas mobilis was more efficient strain for ethanol production than S. cerevisiae.

유가의 급등과 화석 연료의 고갈, 환경 오염문제 등에 대비하기 위하여 대체 수송 연료로서의 바이오에탄올에 대한 관심이 고조되고 있으며, 이에 따라 바이오에탄올 생산비용 절감을 위한 연구가 매우 활발하다. 본 연구에서는 에탄올 생산성 향상을 위하여 Zymomonas mobilis의 에탄올 발효특성을 Saccharomyces cerevisiae와 비교하였다. 음료용 에탄올 생산균주로 오랫동안 사용되어 온 효모와 연료용 에탄올 생산균주로서의 Z. mobilis의 가능성을 검토한 바 최종 에탄올 생성 농도는 큰 차이가 없었으나, 에탄올 생성속도는 Z. mobilis가 S. cerevisiae에 비해 2배 이상 빨랐다. 에탄올 생산성을 비교해 보면 현미, 쌀보리, 카사바의 경우 Z. mobilis는 $2.19g/l{\cdot}h$, $2.60g/l{\cdot}h$, $3.12g/l{\cdot}h$인 반면 S. cerevisiae는 $0.68g/l{\cdot}h$, $1.03g/l{\cdot}h$, $1.28g/l{\cdot}h$ 이었다. 증류액 내의 불순물은 S. cerevisiae는 iso-amylalcohol이 Z. mobilis는 ethyl heptanoate 농도가 상대적으로 높았다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Von Blottnitz, H. and Curran, M. A., "A Review of Assessments Conducted on Bio-ethanol as a Transportation Fuel from a Net Energy, Greenhouse Gas, and Environmental Life Cycle Perspective," J. Clean. Prod., 15(7), 607-619(2007) https://doi.org/10.1016/j.jclepro.2006.03.002
  2. Willke, T. and Vorlop, K. D., "Industrial Bioconversion of Renewable Resources as An Alternative to Conventional Chemistry," Appl. Microbiol. Biotechnol., 66(2), 131-142(2004) https://doi.org/10.1007/s00253-004-1733-0
  3. Aristidou, A. and Penttila, M., "Metabolic Engineering Applications to Renewable Resource Utilization," Curr. Opin. Biotechnol., 11(2), 187-198(2000) https://doi.org/10.1016/S0958-1669(00)00085-9
  4. Camacho-Ruiz, L., Perez-Guerra, N. and Roses, R. P., "Factors Affecting the Growth of Saccharomyces cerevisiae in Batch Culture and in Solid Sate Fermentation," Electron. J. Environ. Agric. Food Chem., 2(5), 531-542(2003)
  5. Ergum, M. and Mutlu, S. F., "Application of Statistical Technique to the Production of Ethanol from Sugar Beet Molasses by Saccharomyces cerevisiae," Bioresour. Technol., 73(3), 251-255(2000) https://doi.org/10.1016/S0960-8524(99)00140-6
  6. Kim, B. G. and Choi, C. Y., "A Study on the Ethanol Production by Immobilized Cells of Zymomonas mobilis," Korean J. Chem. Eng., 1(1), 13-19(1984) https://doi.org/10.1007/BF02697413
  7. Dien, B. S., Cotta, M. A. and Jeffries, T. W., "Bacteria Engineered for Fuel Ethanol Production Current Status," Appl. Microbiol. Biotechnol., 63, 258-266(2003) https://doi.org/10.1007/s00253-003-1444-y
  8. Ingram, L. O., Gomez, P. F., Lai, X., Moniruzzaman, M., Wood, B. E., Yomano, L. P. and York, S. W., "Metabolic Engineering of Bacteria for Ethanol Production," Biotechnol. Bioeng., 58(2), 204-214(1998) https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C
  9. Rogers, P. L., Jeon, Y. J., Lee, K. J. and Lawford, H., "Zymomonas mobilis for Fuel Ethanol and Higher Value Products," Adv. Biochem. Eng. Biotechnol., 108, 263-288(2007) https://doi.org/10.1007/10_2007_060
  10. Rogers, P. L., Lee, K. J. and Tribe, D. E., "Kinetics of Alcohol Production by Zymomonas mobilis at High Sugar Concentrations," Biotechnol. Lett., 1(4), 165-170(1979) https://doi.org/10.1007/BF01388142
  11. Hsu, T., in Wyman, C. E. (ed), Pretreatment of Biomass. In Handbook on Bioethanol - Production and Utilization, Washington DC: Taylor & Francis, 179-212(1996)
  12. Seo, J. S., Chong, H. Y., Park, H. S.,Yoon, K. O., Jung, C. H., Kim, J. J., Hong, J. H., Kim, H. T., Kim, J. H., Kil, J. I., Park, C. J., Oh, H. M., Lee, J. S., Jin, S. J., Um, H. W., Lee, H. J., Oh, S. J., Kim, J. Y., Kang, H. L., Lee, S. Y., Lee, K. J. and Kang, H. S., "The Genome Sequence of the Ethanologenic Bacterium Zymomonas mobilis ZM4," Nat. Biotechnol., 23(1), 63-68(2005) https://doi.org/10.1038/nbt1045
  13. Nijssen, L. M., Visscher, C. A., Maarse, H., Willemsens, L. C. and Boelens, M. H., Volatile Compound in Food: Qualitative and Quantitative Data, 7th ed., TNO Nutrion and Food Research Institute, The Netherlands, 661(1996)