• Title/Summary/Keyword: starch molecular structure

Search Result 43, Processing Time 0.032 seconds

Structure of Hot-Water Soluble Rice Starch in Relation to the Structure of Rice Starch and Texture of Cooked Rice (열수 가용성 쌀 전분의 구조와 전분의 구조 및 밥의 텍스쳐와의 관련성)

  • Kang, Kil-Jin;Kim, Kwan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.757-761
    • /
    • 1995
  • The relationship between the molecular structure of rice starch and the texture of cooked rice was investigated using hot-water soluble rice starch. The structure of hot-water soluble starch bound amylose which was composed of small molecular weight and amylopectin which was composed of chain length of $\overline{DP}\;10{\sim}20$, and the average composition of amylose : amylopectin was 7 : 3. The molecular weight of amylose was the smaller and super long chain of amylopectin was the fewer, the extractable ratio of hot-water soluble rice starch was the higher. And hot-water solubility of rice starch be responsible for molecular structure of starch. On the texture of cooked rice, the extractable ratio of hot-water soluble rice starch was the higher, the hardness was the lower and the adhesiveness was the higher. The results suggest that the molecular structure of rice starch could be responsible for the texture of cooked rice.

  • PDF

Structure and Properties of Starch on Rice Variety (계통이 다른 쌀 전분의 구조적 성질)

  • Kang, Kil-Jin;Kim, Kwan;Kim, Sung-Kon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.684-689
    • /
    • 1995
  • The molecular structure of rice starch was investigated using Korean rice[3 varieties of Japonica type and 3 varieties of Tongi type(Japonica-Indica breeding type)]. The λmax of iodine complex and inherent viscosity of Japonica type were higher than those of Tongil type. $\beta$-Amylolysis limit of the starches was not different between the two rice types. In the distribution of molecular weight of rice starch, the molecular size of amylose and amylopectin for Japonica type were smaller than those for Tongil type. The chain of rice starch distributed F1 of above DP 55, F2 of DP 40~50 and F3 of DP 15~20, and the ratio of F3 against F2 for Japonica type was higher than that of Tongil type. The results suggest that rice of Japonica and Tongil type was different molecular structure of starch.

  • PDF

Relationship between Molecular Structure of Acid-Hydrolyzed Rich Starch and Retrogradation (산처리 쌀전분의 분자구조와 노화속도)

  • Kang, Kil-Jin;Kim, Kwan;Lee, Sang-Kyu;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.876-881
    • /
    • 1997
  • The relationship between the molecular structure of acid-hydrolyzed rice starch and the retrogradation rate of starch gel was investigated. The molecular structure of starch was modified by acid hydrolysis with 1 N HCl at $35^{\circ}C$. The molecular weight of starch decreased as acid hydrolysis time was increased. At the early stage of hydrolysis up to 3 hr, the branching point of amylopectin was degraded and thereafter both ${\alpha}-1,4\;and\;{\alpha}-1,6$ linkages were hydrolyzed. The starch gel (50%) stored at $20^{\circ}C$ revealed that the rapid retrogradation occurred during 4 hr of storage which was more pronounced as the hydrolysis time increased. The degree of retrogradation of starch gels after 4 hr storage showed a linear relationship with the yield of hydrolyzate. These results suggested that the retrogradation of starch gel was accelerated by degradation of ${\alpha}-1,6$ linkages with acid.

  • PDF

Effect of Extrusion-Cooking on the Molecular Structure and Alcohol Yield of Wheat Starch (압출조리에 의한 밀가루 전분질의 분자구조 변화와 알콜발효 효율에 관한 연구)

  • Lee, Cherl-Ho;Kim, Gi-Myung;Kim, Ji-Young;Lim, Jae-Gak
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.683-688
    • /
    • 1991
  • Wheat flour was extruded by a single-screw extruder, and used for the ethanol production of takju. The molecular structure and enzymic susceptability of extruded starch were compared to those of steam cooked one. The gel permeation chromatographic pattern of wheat flour extrudates was not significantly different from those of raw and steam cooked starches. However, the conversion rate of extruded starch into maltose by ${\alpha}-amylase$ hydrolysis was significantly faster than those of raw ad steamed starch. The molecular weight of starch estimated from GPC pattern and the intrinsic viscosity were remarkably reduced by extrusion cooking followed by the enzymic hydrolysis for 30 min, while steam cooking and enzymic hydrolysis for 30 min did not change them significantly. Extrusion-cooked flour produced alcohol 26% higher than that of steamed flour in the laboratory takju fermentation, and 10% more alcohol in the pilot plant scale takju production.

  • PDF

Structure of the Starch-Binding Domain of Bacillus cereus $\beta-Amylase$

  • Yoon, Hye-Jin;Akira, Hirata;Motoyasu, Adachi;Atsushi, Sekine;Shigeru, Utsumi;Bunzo, Mikami
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1999
  • The C-terminal starch-binding domain of Bacillus cereus $\beta$-amylase expressed in Escherichia coli was purified and crystallized using the vapor diffusion method. The crystals obtained belong to a space group of $P3_2$ 21 with cell dimensions, a=b=60.20${\AA},\; c=64.92{\AA},\; and \; \gamma = 120^{\circ}$ The structure was determined by the molecular replacement method and refined at 1.95 ${\AA}$, with R-factors of 0.181. The final model of the starch-binding domain comprised 99 amino acid residues and 108 water molecules. The starch-binding domain had a secondary structure of two 4-stranded antiparallel p-sheets similar to domain E of cyclodextrin glucanotransferase and the C-terminal starch-binding domain of glucoamylase. A comparison of the structures of these starch-binding domains revealed that the separated starch-binding domain of Bacillus cereus $\beta-Amylase$had only one starch-binding site (site 1) in contrast to two sites (site 1 and site 2) reported in the domains of cyclodextrin glucanotransferase and glucoamylase.

  • PDF

Molecular Structure and Gelatinization Properties of Turnip Starch (Brassica rapa L.)

  • Kim, Nam-Hee;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.470-473
    • /
    • 2005
  • Starch was isolated from turnip (Brassica rapa L.), and to elucidate the structure-function relationship its structural and physical properties were characterized. Morphological structure of the starch was analyzed by SEM (Scanning Electron Microscopy). Most of the starch granules were spherical in shape with diameter ranging from 0.5-10mm. Apart from larger granules ($<10\;{\mu}m$) which dominated the population size of turnip starch, significant amount of small ($0.5-2\;{\mu}m$) and mid-size granules (${\sim}\;{\mu}m$) were also detected. It was revealed that presumably, erosion damages occurred due to the attack of amylase-type enzymes on the surface of some granules. Branch chain-length distribution was analyzed by HPAEC (High-Performance Anion-Exchange Chromatography). The chain-length distribution of turnip starch revealed a peak at DP12 with obvious shoulder at DP18-21. The weight-average chain length ($CL_{avg}$) was 16.6, and a large proportion (11.8%) of very short chains (DP6-9) was also observed. The melting properties of starch were determined by DSC (Differential Scanning Calorimetry). The onset temperature ($T_o$) and the enthalpy change (${\Delta}H$) of starch gelatinization were $50.5^{\circ}C$ and 12.5 J/g, respectively. The ${\Delta}H$ of the retrograded turnip starch was 3.5 J/g, which indicates 28.2% of recrystallization. Larger proportion of short chains as well as smaller average chain-length can very well explain relatively lower degree of retrogradation in turnip starch.

Investigation of Physical Property Change in Modified Corn Starch by Ultra Fine Pulverization (초미세분쇄를 이용한 옥수수 변성전분의 물리적 특성 변화 구명)

  • Han, Myung Ryun;Kim, Ae Jung;Chang, Moon Jeong;Lee, Soo Jeong;Kim, Hee Sun;Kim, Myung Hwan
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.335-340
    • /
    • 2009
  • This study was performed to analyze changes in the molecular structural and physical properties of modified corn starch, in which particle structure was broken using high impact planetary mill and ultra fine pulverizing techniques. The average diameter and specific surface area of the modditied corn starch after pulverization decreased 50% and increased 567%, respectively. Content of low molecular substances mersured using gel permeation chromatography (GPC) increased from 21.0% to 86.5% after pulverizing corn starch. Damaged starch content also increased from 9.63% to 83.57% after pulverizing corn starch. After pulverization, gel formation capacity corn starch was reduced compared to that of control by structure breakdown.

Investigation of Physical Property Change in Modified Rice Starch by Ultra Fine Pulverization (초미세분쇄를 이용한 쌀 변성전분의 물리적 특성 변화구명)

  • Han, Myung-Ryun;Chang, Moon-Jeong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.160-166
    • /
    • 2007
  • This study was performed to analyze the molecular structural and physical properties changes of modified rice starch, which particle structure was broken using high impact planetary mill and ultra fine pulverizing techniques. The average diameter and specific surface area of rice starch after pulverization decreased 20% and increased 25%, respectively. Low molecular substances content in rice starch using GPC (gel permeation chromatography) increased from 36.5% to 59.5% after pulverizing of rice starch. Damaged starch contents in rice starch also increased from 16.4% to 99.2% after pulverizing of rice starch. Water holding capacity, solubility and transmittance of rice starch after pulverization increased compared to those of control. Apparent viscosity value of rice starch after pulverization decreased to 7% in control based on $30^{\circ}C$ and 20 RPM conditions.

Study of Molecular and Crystalline Structure and Physicochemical Properties of Rice Starch with Varying Amylose Content (아밀로오스 함량이 다른 쌀 전분의 분자 및 결정 구조와 이화학적 특성)

  • You, Su-Yeon;Lee, Eun-Jung;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.682-688
    • /
    • 2014
  • The in vitro digestibility and molecular and crystalline structures of rice starches (Seilmi, Dasan1, and Segoami) with differing amylose content were investigated. Segoami had the highest amylose content (30.9%), whereas Dasan1 had the lowest amylose content (21.2%). The molecular weight ($\bar{M}_w$) of amylose and amylopectin in Segoami was much lower than that of the other two rice starches. Segoami had the highest proportion (8.7%) of amylopectin short branch chains (DP 6-12) and the lowest proportion of B1 chains (DP 13-24). The relative crystallinity, intensity ratio of $1047-1022cm^{-1}$ (1047/1022) and gelatinization enthalpy followed the order: Segoami>Seilmi~Dasan1. Segoami showed substantially low pasting viscosity. Rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents showed the highest value in Seilmi, Dasan1, and Segoami, respectively. The expected glycemic index (eGI) of Segoami was lower than that of the other two rice starches. Overall results suggested that the digestibility of rice starch could be highly influenced by their molecular and crystalline structure.

Effect of molecular and crystalline structure on phase transition behaviors of rice starches (쌀전분의 분자 및 결정구조가 상전이에 미치는 영향)

  • Jeong, Duyun;Lee, Su-Jin;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.432-437
    • /
    • 2019
  • The objective of this study was to determine the molecular/crystalline structures and phase transition properties of starches isolated from six rice cultivars grown in Korea. Apparent amylose content was highest in starch obtained from the Saemimyeon cultivar (30.8%) and lowest in that obtained from the Sheonhyangheukmi cultivar (20.3%). Starch from the Saemimyeon cultivar had a lower proportion of short chains (DP 6-12) and a the higher proportion of long chains (DP${\geq}37$) than that seen in other rice starches. Saemimyeon had relatively higher pasting temperature ($86.5^{\circ}C$), gelatinization temperature ($72.1^{\circ}C$) and gelatinization enthalpy (14.2 J/g) than these values found for other rice starches. The onset temperature and enthalpy for ice crystallization of rice starch ranged from $-27.1{\sim}-20.2^{\circ}C$ and 241.1~264.8 J/g, respectively. The ice melting enthalpy measured in excess water (67% water content) of rice starches was 282.4~310.1 J/g. Among the rice starches examined, starch obtained from Sheonhyangheukmi, with the lowest amylose content, showed the lowest glass transition temperature (${T_g}^{\prime}$).