DOI QR코드

DOI QR Code

Effect of molecular and crystalline structure on phase transition behaviors of rice starches

쌀전분의 분자 및 결정구조가 상전이에 미치는 영향

  • Jeong, Duyun (Division of Food and Nutrition, Chonnam National University) ;
  • Lee, Su-Jin (Department of Hotel Cuisine, Suseong College) ;
  • Chung, Hyun-Jung (Division of Food and Nutrition, Chonnam National University)
  • 정두연 (전남대학교 식품영양과학부) ;
  • 이수진 (수성대학교 호텔조리과) ;
  • 정현정 (전남대학교 식품영양과학부)
  • Received : 2019.07.26
  • Accepted : 2019.08.31
  • Published : 2019.10.31

Abstract

The objective of this study was to determine the molecular/crystalline structures and phase transition properties of starches isolated from six rice cultivars grown in Korea. Apparent amylose content was highest in starch obtained from the Saemimyeon cultivar (30.8%) and lowest in that obtained from the Sheonhyangheukmi cultivar (20.3%). Starch from the Saemimyeon cultivar had a lower proportion of short chains (DP 6-12) and a the higher proportion of long chains (DP${\geq}37$) than that seen in other rice starches. Saemimyeon had relatively higher pasting temperature ($86.5^{\circ}C$), gelatinization temperature ($72.1^{\circ}C$) and gelatinization enthalpy (14.2 J/g) than these values found for other rice starches. The onset temperature and enthalpy for ice crystallization of rice starch ranged from $-27.1{\sim}-20.2^{\circ}C$ and 241.1~264.8 J/g, respectively. The ice melting enthalpy measured in excess water (67% water content) of rice starches was 282.4~310.1 J/g. Among the rice starches examined, starch obtained from Sheonhyangheukmi, with the lowest amylose content, showed the lowest glass transition temperature (${T_g}^{\prime}$).

본 연구에서는 국내에서 육종된 쌀품종의 전분에 대한 분자 및 결정구조을 밝히고 이와 같은 결과들이 상전이 특성에 미치는 영향을 조사하였다. 새미면 전분은 아밀로스 함량이 가장 높았으며, 다른 쌀전분에 비해 상대적으로 아밀로펙틴의 짧은 사슬(DP 6-12)과 평균사슬길이, 치반점도와 최종점도, 호화온도와 엔탈피, 2차 상전이인 ${T_g}^{\prime}$이 유의적으로 높았으며, 반대로 최고점도와 강하점도, ice melting 온도와 엔탈피가 유의적으로 낮았다. 아밀로스 함량이 가장 낮은 선향흑미는 다른 전분에 비해 유의적으로 높은 ice melting 엔탈피를 나타냈고 ${T_g}^{\prime}$이 높았다. 결과적으로 쌀 전분의 상전이 특성은 분자 및 결정 구조에 큰 영향을 받는 것을 확인할 수 있었다.

Keywords

References

  1. Bae HK, Hwang JD, Seo JH, Kim SY. Optimal transplanting time for 'Saemimyeon' production in Youngnam province. Korean J. Crop. Sci. 63: 205-209 (2018) https://doi.org/10.7740/KJCS.2018.63.3.205
  2. Bao JS, Shen SQ, Sun M, Corke H. Analysis of genotypic diversity in the starch physicochemical properties of nonwaxy rice: Apparent amylose content, pasting viscosity and gel texture. Starch-Starke 58: 259-267 (2006) https://doi.org/10.1002/star.200500469
  3. Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agr. Food Chem. 34: 6-14 (1986) https://doi.org/10.1021/jf00067a002
  4. Blond G, Simatos D. Optimized thermal treatments to obtain reproducible DSC thermograms with sucrose+dextran frozen solutions. Food Hydrocolloid. 12: 133-139 (1998) https://doi.org/10.1016/S0268-005X(98)00007-1
  5. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohyd. Polym. 36: 277-284 (1998) https://doi.org/10.1016/S0144-8617(98)00007-1
  6. Chung HJ, Liu Q, Lee L, Wei D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloid. 25: 968-975 (2011) https://doi.org/10.1016/j.foodhyd.2010.09.011
  7. Franks F, Asquith MH, Hammod CC, Skaer HB, Echlin P. Polymeric cryoprotectants in the preservation of biological ultrastructure. I. Low temperature states of aqueous solutions of hydrophilic polymers. J. Microsc. 110: 223-238 (1977) https://doi.org/10.1111/j.1365-2818.1977.tb00034.x
  8. Gidley MJ, Bulpin PV. Crystallization of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohyd. Polym. 13: 291-300 (1987) https://doi.org/10.1016/S0008-6215(00)90086-7
  9. Han XY, Hamaker BR. Functional and micro-structural aspects of soluble corn starch in pastes and gel. Starch-Starke 52: 76-80 (2000) https://doi.org/10.1002/(SICI)1521-379X(200004)52:2/3<76::AID-STAR76>3.0.CO;2-B
  10. Hanashiro I, Abe J, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anionexchange chromatography. Carbohyd. Res. 283: 151-159 (1996) https://doi.org/10.1016/0008-6215(95)00408-4
  11. Iturriaga L, Lopez B, Anon M. Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Res. Int. 37: 439-447 (2004) https://doi.org/10.1016/j.foodres.2003.12.005
  12. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. Effect of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629-637 (1999) https://doi.org/10.1094/CCHEM.1999.76.5.629
  13. Kum JS. Blooming of rice processing industry. Food Ind. Nutr. 13: 9-14 (2008)
  14. Lee NY. Starch and quality characteristics of Korean rice cultivar with waxy and non-waxy type. Korea J. Crop Sci. 58: 226-231 (2013) https://doi.org/10.7740/kjcs.2013.58.3.226
  15. Lim ST, Lee JH, Shin DH, Lim HS. Comparison of protein extraction solutions for rice starch isolation and effects of residual protein content on starch pasting properties. Starch-Starke 51: 120-125 (1995)
  16. Nara S, Komiya TT. Studies on the relationship between water saturated state and crystallinity by the diffraction method for moistened potato starch. Starch-Starke 35: 407-410 (1983) https://doi.org/10.1002/star.19830351202
  17. Oh SM, Choi HW, Kim BY, Baik MY. Retrogradation kinetics of chestnut starches cultivated in three regions of Korea. Food Sci. Biotechnol. 26: 663-670 (2017) https://doi.org/10.1007/s10068-017-0103-5
  18. Ong MH, Blanshard JMV. Texture determinants in cooked, parboiled rice. I: Rice starch amylose and the fine structure of amylopectin. J. Cereal Sci. 21: 251-260 (1995) https://doi.org/10.1006/jcrs.1995.0028
  19. Park IM, Ibanez AM, Zhong F, Shoemaker CF. Gelatinization and pasting properties of waxy and non-waxy rice starches. Starch-Starke 59: 388-396 (2007) https://doi.org/10.1002/star.200600570
  20. Raina CS, Singh S, Bawa AS, Saxena DC. A comparative study of Indian rice starches using different modification model solutions. LWT-Food Sci. Technol. 40: 885-892 (2007) https://doi.org/10.1016/j.lwt.2006.03.025
  21. Reddy, KR., Subramanian, R., Ali, SZ., Bhattacharya KR. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem. 71: 548-552 (1994)
  22. Roos YH. Phase transition in foods, San Diego: Academic Press (pp. 1-18 and pp. 73-107), San Diego, CA (1995)
  23. Roos YH, Karel M, Kokini JL. Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol. 50: 95-108 (1996)
  24. Simatos D, Blond G. Some aspects of the glass transition in frozen foods systems. In: The glassy state in foods. Blanshard JMV, Lillford PJ. Eds Nottingham university press, Nottingham, U.K. (1993)
  25. Srikaeo K, Boonrod C, Rahman MS. Effect of storage temperatures on the head rice yield in relation to glass transition temperatures and un-freezable water. J. Cereal Sci. 70: 164-169 (2016) https://doi.org/10.1016/j.jcs.2016.06.006
  26. Tester RF, Morrison WR. Swelling and gelatinization of cereal starch. II: Waxy rice starches. Cereal Chem. 67: 558-563 (1990)
  27. Tukomane T, Varavinit S. Classification of rice starch amylose content from rheological changes of starch paste after cold recrystallization. Starch-Starke 60: 292-297 (2008) https://doi.org/10.1002/star.200700672
  28. Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. Rice starches. I. Structural aspects provide insight crystallinity characteristics and gelatinization behavior of granular starch. J. Cereal Sci. 38: 43-52 (2003) https://doi.org/10.1016/S0733-5210(02)00140-6
  29. Wani AA, Singh P, Shah MA, Wani IA, Gotz A, Schott M, Zacherl C. Physico-chemical, thermal and rheological properties of starches isolated from newly released rice cultivars grown in Indian temperate climates. LWT-Food Sci. Technol. 53: 176-183 (2013) https://doi.org/10.1016/j.lwt.2013.02.020
  30. Wani AA, Singh P, Shah MA, Weisz US, Gul K, Wani IA. Rice starch diversity: effects on structural, morphological, thermal, and physicochemical properties-A review. Compr. Rev. Food Sci. F. 11: 417-436 (2012) https://doi.org/10.1111/j.1541-4337.2012.00193.x
  31. Williams PC, Kuzina FD, Hlynka I. A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 47: 411-420 (1970)
  32. You SY, Lim ST, Lee JH, Chung HJ. Impact of molecular and crystalline structures on in vitro digestibility of waxy rice starches. Carbohyd. Polym. 112: 729-735 (2014) https://doi.org/10.1016/j.carbpol.2014.06.065
  33. You SY, Oh SK, Kim HS, Chung HJ. Influence of molecular structure on physicochemical properties and digestibility of normal rice starches. Int. J. Biol. Macromol. 77: 375-382 (2015) https://doi.org/10.1016/j.ijbiomac.2015.02.054