• 제목/요약/키워드: standard wind speed

검색결과 186건 처리시간 0.027초

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.

Analysis of Change of Contact Force in the Pantograph Pan Head of Next Generation High Speed Train (차세대 고속전철 팬터그래프 팬 헤드의 압상력 변화 해석)

  • Kang, Hyungmin;Kwon, Hyeok-bin
    • The KSFM Journal of Fluid Machinery
    • /
    • 제20권1호
    • /
    • pp.35-40
    • /
    • 2017
  • In order to investigate the change of contact force of pantograph pan head due to the change of aerodynamic force, three dimensional flow around the pan head were calculated. For this, the aerodynamic modeling of pan head of CX pantograph was performed and the standard deviation of the contact force of the simulation results were compared with those of the experimental results of wind tunnel tests. From the comparison, it was confirmed that the current grid system and the numerical methodologies can be utilized to calculate the aerodynamic characteristics of the pantograph pan head. By using these grid system and the methodologies, the standard deviations of the contact force of pan head were calculated with velocities as 200, 250, 300, 350, and 400 km/h. The maximum standard deviation of the aerodynamic contact force of pan head was 92 N at 400 km/h and statistical minimum contact force was more than 0 N. Therefore, it was confirmed that and the pan head of CX pantograph was statistically contacted with the catenary system with the train speed of 350 km/h though the aerodynamic contact force was changed.

Statistical Blade Angular Velocity Information-based Wind Turbine Fault Diagnosis Monitoring System (블레이드 각속도 통계 정보 기반 풍력 발전기 고장 진단 모니터링 시스템)

  • Kim, Byoungjin;Kang, Suk-Ju;Park, Joon-Young
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.619-625
    • /
    • 2016
  • In this paper, we propose a new fault diagnosis monitoring system using gyro sensor-based angular velocity calculation for blades of the wind turbine system. First, the proposed system generates the angular velocity dataset for the rotation speed of the normal blade. Using the dataset, we estimate and evaluate the state of blades for the wind turbine by comparing the current state with the pre-calculated normal state. In the experimental results, the angular velocity of the normal state was higher than $360^{\circ}/s$ while that of the damaged blades was lower than $360^{\circ}/s$ and the standard deviation of the angular velocity was significantly increased.

Output Power Control of Permanent Magnet Wind Power Generator with Space Voltage Vector Current Control Strategy (공관전압벡터 전류제어기법을 이용한 영구자석형 풍력발전기의 출력제어)

  • Choi, Jong-Seog;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.361-364
    • /
    • 2000
  • In this study, the system which can make the generator's output voltage more stable by using the inverter in terms of PWM method, is designed It is one of the method reducing velocity of the wind in the process of the wind power generation. Thus, in this system, it is necessary to use a excellent current control inverter. So pulse with modulation method with a high-speed switching element is introduced to control the output current. And also, in order to get a fast response when the standard current generated by the vector control algorithm is supplied with the generator, the output control system with the fast response character and the best current control character is suggested. In this way, the result from the introduction of the control system is that a response character to the changable velocity of the wind is excellent, causing the remarkable reduction of the percentage of the harmonic and the outstanding stability of the variation of the output voltage.

  • PDF

Implementation of Ultrasonic Anemometer & Anemoscope Data-Logger System (초음파 풍향 풍속계 데이터 로거 시스템의 구현)

  • Lee, Woo-Jin;Yim, Jae-Hong;Kang, Young-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제39C권2호
    • /
    • pp.184-190
    • /
    • 2014
  • Until now ship communication micro serial network communication method is designed for the communication between the controller and the RS-422 communication on the international standard ISO 1993, but gradually progresses NMEA 2000 standardized fast Ethernet-based communications environments expected to be replaced. In addition, the ship's main instrumentation equipment versatility with ease gradually to control devices by monitoring and controlling are. Wind anemometer, ship mast end, where the highest wind farms typically install a separate console boxes, data loggers, indicators was required in order to manage them, to maintain them, to go through the procedures and cumbersome data update firmware were Therefore, in this paper, using the PC network, ultrasonic wind speed data processing system for implementing functional was expressed as a function of the technology elements, NMEA 2000 standard certified in separate operating console without the features of the data loggers, indicators, implementation by ultrasonic wind data processing system was implemented to minimize the maintenance cost of the operating system.

Estimation of Standard Load for Disaster-Resistant Design of Outdoor Signboards (내재해형 옥외광고물 설계를 위한 표준하중 산정)

  • Lee, Sungsu;Kim, Junyeong;Ham, Hee Jung;Kim, Ji Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제29권2호
    • /
    • pp.131-140
    • /
    • 2016
  • Recent destructions of outdoor signboards have frequently been caused by strong wind, resulting in damage on the property and human livelihood. One of the major causes of the problems is inadequate implementation of structural design code to the outdoor signboards which are vulnerable to wind. This leads to this paper to present the design guideline of wind-resistant outdoor signboards. In order to estimate the design wind speed, basic wind speeds over Korea suggested by KBC(2015)(revision) are corrected with land surface roughness and topography of the terrain and installation height of the signboard. This paper also suggested the procedure of wind load estimation for different types of outdoor signboards; wall attached type, wall ribbed type and ground erected type. Since the process involves complex calculation to some extent, this paper presents summarized version of wind load estimation from non-professional point of view.

Measurement of Aerodynamic Properties of Screens for Windbreak Fence using the Apparatus for Testing Screens (공력 저항 측정기를 이용한 방풍펜스 방진막의 공기 투과 저항력 측정)

  • Kim, Rack-Woo;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Son, Young-Hwan;Kim, Tae-Wan;Kim, Min-Young;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제55권6호
    • /
    • pp.145-154
    • /
    • 2013
  • Recently, damage occurrence by wind erosion has been increasing in society. In times past, such problems only took place in desert area ; however, in recent years, the wind erosion problem is spreading out to agricultural land. Wind erosion in agricultural land can cause loss of loam soils, the disturbance of the photosynthesis of the crop fields and serious economic losses. To overcome the mentioned problems, installation of windbreak fence can be recommended which function as disturbing strong wind and wind erosion. However, there is still no proper guideline to install the windbreak fence and the installation used to rely on the intuition of the workers due to the lack of related studies. Therefore, this study measured the aerodynamic resistance of screens of the windbreak fence using the apparatus for testing screens. The apparatus for testing screens was designed to measure pressure loss around the screen. Measured pressure loss by wall friction compensated for pressure loss to calculate the aerodynamic resistance of screens. The result of pressure loss by regression analysis derived the aerodynamic coefficient of Darcy-Forchheimer equation and power law equation. The aerodynamic resistance was constant regardless of the overlapped shape when the screen was overlapped into several layers. Increasing the number of layers of the screen, internal resistance increased significantly more, and pressure loss caused by the screen also increased linearly when the wind speed was certain conditions, but permeability had no tendency. In the future, the results of this study will be applied to the computational fluid dynamics simulation. The simulation models will be also validated in advance by wind tunnel experiments. It will provide standard of a design for constructing windbreak fence.

Characteristics on variation of meterological variables during the partial solar eclipse event of 21 May 2012 in Busan (2012년 5월 21일 부분일식 발생 시 부산지역 기상요소의 변화 특성)

  • Jeon, Byung-Il;Kim, Il-Gon
    • Journal of Environmental Science International
    • /
    • 제22권7호
    • /
    • pp.885-893
    • /
    • 2013
  • The purpose of this study was to analyze the effects of partial solar eclipse on 21 May 2012 in Korea on meteorological variables in Busan. 0800 LST(Local Standard Time) solar radiation was similar or lower than 0700 LST solar radiation, and sunshine duration decreased by 0.2~0.5 hours in Busan and great cities under the influence of the partial solar eclipse. Temperature drop due to the partial solar eclipse was $0.2{\sim}2.0^{\circ}C$, time taken to arrive at maximum temperature after onset of eclipse was 8~62 minutes, and time taken to arrive at minimum temperature after maximum eclipse was -9~17 minutes in Busan. Change of wind speed was negligible as partial solar eclipse occurred in the morning. Soil temperature of 5 cm was minute as well, the increase of soil temperature due to sunset was delayed by more than 1 hour.

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.