• Title/Summary/Keyword: standard measurement methods

Search Result 870, Processing Time 0.033 seconds

Photogrammetry Based on Standardized Clinical Photography using Cephalostat: Comparison with Anthropometric Analysis (머리고정기(Cephalostat)를 이용한 표준임상사진술에서 사진계측법: 인체계측법과의 비교)

  • Kwon, Hyuk Joon;Han, Ki Hwan;Kim, Jun Hyung;Son, Dae Gu
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.24-36
    • /
    • 2007
  • Purpose: Direct anthropometry is an ideal method for preoperative planning and postoperative evaluation in plastic surgery, but it requires highly skilled specialty. Indirect anthropometry, especially photogrammetry, is an alternative method. In photogrammetry, standardized clinical photography is essential. Photogrammetry-based standardized clinical photography has several advantages over direct anthropometry. It is easier to measure and has less chance to make errors during measurement. Furthermore, it is possible to repeat measurements, and available for follow up study based on permanent custody. But, it is still different from actual measurement, and inherently less accurate than anthropometry. Methods: The authors revised the standardized clinical photography and then, carried out photogrammetry using Photoshop(Adobe, U.S.A.), and compared each data with those of anthropometry. The subjects were 50 males and 50 females, undergraduate medical students in twenties. Standard head position was obtained from the wire, fixed to cephalostat which indicates the Frankfort horizontal plane. All photographs were taken at the same situation such as fixed position of light, subject and camera, etc. Results: Total 96 measurements, based on 40 landmarks, consist of linear measurements, angular measurements and inclinations include 3 measurements in head, 22 in face, 15 in orbit, 28 in nose, 16 in lip and mouth, and 12 in ear. Conclusion: Normal photogrammetric data of face of Korean in twenties was obtained. Reliable photogrammetric measurements, not significantly different from anthropometric measurement statistically, accounted for 44 in 96 measurements(45.8%). Anthropometric values different from those of photogrammetric values were obtained by multiplying coefficient by photogrammetric value.

Reliability and Validity of Measurement Using Smart Phone-Based Goniometer on Pelvic Tilting Angle in Standing and Sitting Position

  • Ha, Sung-Min;Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Purpose: The purpose of this study was to assess the intra-rater and inter-rater reliability and validity of pelvic tilting angle measurements using a smart phone-based inclinometer (Clino) compared to a palpation meter (PALM) in the standing and sitting position. This study used an interchangeable method with Clino to measure the pelvic tilting angle in the standing and sitting positions. Methods: Twenty healthy subjects were recruited. Measurements of the pelvic tilting angle in the standing and sitting positions were obtained by two examiners using the Clino and PALM. A resting session was conducted 10 minutes later to assess the intra and inter rater reliability. To assess validity of the measurement using Clino, a PALM was used as the gold standard. The intra-class correlation coefficient (ICC) was used to determine the intra and inter rater reliability of Clino and a PALM. To assess the validity, the Pearson correlation coefficients were used for two measurement techniques to measure the pelvic tilting angle in the standing and sitting positions. The statistical significance was set to ${\alpha}=0.05$. Results: Measurements of the pelvic tilt had high inter-rater reliability in the standing (ICC=0.82) and sitting (ICC=0.88) positions using Clino and intra-rater reliability in the standing (ICC=0.87) and sitting (ICC=0.91) positions using Clino. Measurements of the pelvic tilt had high validity by a comparison of PALM and Clino in the standing (r=0.83) and sitting (r=0.89) positions (p<0.05). Conclusion: The use of Clino can be recommended as a tool to replace the PALM and measure the pelvic tilt angle in the standing and sitting positions while maintaining the clinical reliability and validity.

EMF Measurement and Safety Assessment Method for Wireless Power Transfer System for Urban Railroad (도시철도용 무선 급집전 시스템 주변의 전자기장 측정 방법 및 안전성 평가 방법 연구)

  • Gimm, Yoon-Myoung;Kim, Jun-Hee;Ju, Young-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.942-952
    • /
    • 2018
  • A wireless power transfer (WPT) system for an urban railroad is currently under development in S. Korea. This system supplies power to railroad cars using 60 kHz magnetic fields. The electromagnetic fields (EMFs) generated by the WPT system should satisfy established safety requirements for exposure of the human body to these fields. However, EMF measurements and the safety assessment methods for fields generated by the WPT system have not yet been established. As such, a measurement and safety assessment method for EMF generated by a WPT system for an urban railroad is proposed in this report. The EMF generated by this WPT system on a test railroad was measured and compared to the reference level set by the human safety standard for EMF exposure.

Investigation of Standard Error Range of Non-Contact Thermometer by Environment (외부 환경 변화에 의한 비 접촉 체온계의 오차 범위 측정)

  • Kim, Jeongeun;Park, Sangwoong;Choi, Heakyung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.307-321
    • /
    • 2020
  • Purpose : A person infected by SARS-CoV2 may present various symptoms such as fever, pain in lower respiratory tract, and pneumonia. Measuring body temperature is a simple method to screen patients. However, changes in the surrounding environment may cause errors in infrared measurement. Hence, a non-contact thermometer controls this error by setting a correction value, but it is difficult to correct it for all environments. Therefore, we investigate device error values according to changes in the surrounding environment (temperature and humidity) and propose guidelines for reliable patient detection. Methods : For this study, the temperature was measured using three types of non-contact thermometers. For accurate temperature measurement, we used a water bath kept at a constant temperature. During temperature measurement, we ensured that the temperature and humidity were maintained using a thermo-hygrometer. The conditions of the surrounding environment were changed by an air conditioner, humidifier, warmer, and dehumidifier. Results : The temperature of the water bath was measured using a non-contact thermometer kept at various distances ranging from 3~10 cm. The value measured by the non-contact thermometer was then verified using a mercury thermometer, and the difference between the measured temperatures was compared. It was observed that at normal surrounding temperature (24 ℃), there was no difference between the values when the non-contact thermometer was kept at 3 cm. However, as the distance of the non-contact thermometer was increased from the water bath, the recorded temperature was significantly different compared with that of mercury thermometer. Moreover, temperature measurements were conducted at different surrounding temperatures and the results obtained significantly varied from when the thermometer was kept at 3 cm. Additionally, it was observed that the effect on temperature decreases with an increase in humidity Conclusion : In conclusion, non-contact thermometers are lower in lower temperature and dry weather in winter.

Evaluating the Reliability of Short-Form Berg Balance Scales and Short-Form Postural Assessment Scales in Chronic Stroke Survivors

  • Seung-Heon An;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.143-151
    • /
    • 2024
  • Objective: This study aims to assess the test-retest reproducibility of the Short Form Berg Balance Scale (SF-BBS) and the Short Form Postural Assessment Scale for Stroke (SF-PASS) among chronic stroke survivors, focusing on their reliability for consistent measurements over time. Design: A cross-sectional study design Methods: Thirty chronic stroke survivors participated in this study, undergoing evaluations with SF-BBS and SF-PASS scales at two different points, separated by a seven-day interval. The analysis focused on test-retest reliability, employing statistical measures such as the Intra-Class Coefficient (ICC2,1), Standard Error of Measurement (SEM), Minimal Detectable Change (MDC), and MDC%, the Bland-Altman plot to assess the limits of agreement and the extent of random measurement error. Results: The study found notable test-retest reproducibility for both SF-BBS and SF-PASS, with ICC values demonstrating strong reliability (0.932 to 0.941, with a confidence interval of 0.889 to 0.973). SEM values for SF-BBS and SF-PASS were reported as 1.34 and 0.61, respectively, indicating low measurement error. MDC values of 3.71 for SF-BBS and 1.69 for SF-PASS suggest that the scales have an acceptable level of sensitivity to change, with reliability metrics falling below 20% of the maximum possible score. Conclusions: The findings suggest that both SF-BBS and SF-PASS exhibit high intra-class correlation coefficients, indicating strong test-retest reliability. The SEM and MDC values further support the scales' reproducibility and reliability as tools for evaluating mobility and dynamic balance in chronic stroke survivors. Therefore, these scales are recommended for clinical use in this population, providing reliable measures for assessing progress in rehabilitation.

A Study on Validation of the Shielding Effectiveness Measurement Method of the Concrete Containing Electric Arc Furnace Oxidizing Slag (전기로산화슬래그를 활용한 콘크리트의 차폐효과 측정 방법의 유효성 검증 연구)

  • Jang, Hong-Je;Lee, Han-Hee;Choi, Hyo-Sik;Song, Tae-Seung;Cho, Won-Seo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.478-482
    • /
    • 2021
  • In this paper, methods for manufacturing shielding concrete by recycling steelmaking slag discarded as industrial waste and measuring the shielding effectiveness of the shielding concrete were studied. By comparing the result of shielding effectiveness measurement of this concrete block with shielding effectiveness measurement of the structure constructed with this concrete, the measurement system for measuring shielding effectiveness of the concrete block was verified. The size of the concrete stru ctu re is 2.9 × 2.9 × 3.4m and the concrete block is 0.3 × 0.3 × 0.2m. The frequ ency band u sed for mesu rement is 600MHz - 2GHz, the types of concrete u sed to measu re the shielding effectiveness are general concrete and concrete containing electric arc furnace oxidizing slag. In the case of the concrete structure, reinforcing rebars are installed at intervals of 15cm for stru ctu ral safety, as the frequ ency increase, the electromagnetic wave properties of rebars gradu ally decreased, there was a slight difference in the measurement results. In conclusion, the measurement result of shielding effectiveness of the concrete block is similar to the result of the concrete structure. It is thought that it can be sufficiently utilized for electromagnetic wave engineering design, and the concrete shielding effectiveness measurement system using standard specimens was verified.

MARGINAL FIT OF CELAY/IN-CERAM, CONVENTIONAL IN-CERAM AND EMPRESS 2 ALL-CERAMIC SINGLE CROWNS (Celay/In-Ceram, Conventional In-Ceram, Empress 2 전부도재관의 변연적합도에 관한 비교 연구)

  • Yang, Jae-Ho;Yeo, In-Sung;Lee, Sun-Hyung;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • There have been many studies about marginal discrepancy of single restorations made by various systems and materials. But many of statistical inferences are not definite because of sample size, measurement number, measuring instruments. etc. The purpose of this study was to compare the marginal adaptations of the anterior single restorations made by different systems and to consider more desirable statistical methods in analysing the marginal fit. The in vitro marginal discrepancies of three different all-ceramic crown systems (Celay In-Ceram. Conventional In-Ceram. IPS Empress 2 layering technique) and one control group (PFM) were evaluated and compared. The crowns were made from one extracted maxillary central incisor prepared with a 1mm shoulder margin and $6^{\circ}$ taper walls by milling machine. 10 crowns per each system were fabricated. Measurements or a crown were recorded at 50 points that were randomly selected for marginal gap evaluation. Non-parametric statistical analysis was performed for the results. Within the limits of this study, the following conclusions were drawn: 1 Mean gap dimensions and standard deviations at the marginal opening for the maxillary incisor crowns were $98.2{\pm}40.6{\mu}m$ for PFM, $83.5{\pm}18.7{\mu}m$ for Celay In-Ceram, $104.9{\pm}44.1{\mu}m$ for conventional In-Ceram, and $45.5{\pm}11.5{\mu}m$ for IPS Empress 2 layering technique. The IPS Empress 2 system showed the smallest marginal gap (P<0.05). The marginal openings of the other three groups were not significantly different (P<0.05). 2 The marginal discrepancies found in this study were all within clinically acceptable standards ($100\sim150{\mu}m$). 3. When the variable is so controlled that the system may be the only one, mean value is interpreted to be the marginal discrepancy of a restoration which is made by each system and standard deviation is to be technique-sensitivity of each one. 4. From the standard deviations. the copy-milling technique (Celay/In-Ceram) was not considered to be technique-sensitive in comparison with other methods. 5. Parametric analysis is more reliable than non-parametric one in interpretation of the mean and standard deviation. The sample size of each group has to be more than 30 to use parametric statistics. The level of clinically acceptable marginal fit has not been established. Further studies are needed.

Appropriate image quality management method of bone mineral density measurement (골밀도 측정의 올바른 질 관리방법)

  • Kim, Ho-Sung;Dong, Kyung-Rae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1141-1149
    • /
    • 2009
  • In Bone Mineral Density(BMD) measurements, accuracy and precision must be superior in order to know the small changes in bone mineral density and actual biological changes. Therefore the purpose of this study is to increase the reliability of bone mineral density inspection through appropriate management of image quality from machines and inspectors. For the machine management method, the recommended phantom from each bone mineral density machine manufacturer was used to take 10~25 measurements to determine the standard amount and permitted limit. On each inspection day, measurements were taken everyday or at least three times per week to verify the whether or not change existed in the amount of actual bone mineral density. Also evaluations following Shewhart control chart and CUSUM control chart rules were made for the bone mineral density figures from the phantoms used for measurements. Various forms of management became necessary for machine installation and movement. For the management methods of inspectors, evaluation of the measurement precision was conducted by testing the reproducibility of the exact same figures without any real biological changes occurring during reinspection. There were two measurement methods followed: patients were either measured twice with 30 measurements or three times with 15 measurements. An important point to make regarding measurements is that after the first inspection and any other inspection following, the patient was required to come off the inspection table completely and then get back on for any further measurements. With a 95% confidence level, the precision error produced from the measurement bone mineral figures produced a precision error of 2.77 times the minimum of the biological bone mineral density change (Least significant change: LSC). In order to assure reliability in inspection, there needs to be good oversight of machine management and measurer for machine operation and inspection error. Accuracy error in machines needs to be reduced to under 1% for scientific development in bone mineral density machines.

  • PDF

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

Reliability Analysis of Finger Joint Range of Motion Measurements in Wearable Soft Sensor Gloves (웨어러블 소프트 센서 장갑의 손가락 관절 관절가동범위 측정에 대한 신뢰도 분석)

  • Eun-Kyung Kim;Jin-Hong Kim;Yu-Ri Kim;Ye-Ji Hong;Gang-Pyo Lee;Eun-Hye Jeon;Joon-bum Bae;Su-in Kim;Sang-Yi Lee
    • PNF and Movement
    • /
    • v.21 no.2
    • /
    • pp.171-183
    • /
    • 2023
  • Purpose: The purpose of this study was to compare universal goniometry (UG), which is commonly used in clinical practice to measure the range of motion (ROM) of finger joints with a wearable soft sensor glove, and to analyze the reliability to determine its usefulness. Methods: Ten healthy adults (6 males, 4 females) participated in this study. The metacarpophalangeal joint (MCP), interphalangeal joint (IP), and proximal interphalangeal joint (PIP) of both hands were measured using UG and Mollisen HAND soft sensor gloves during active flexion, according to the American Society for Hand Therapists' measurement criteria. Measurements were taken in triplicate and averaged. The mean and standard deviation of the two methods were calculated, and the 95% limits of agreement (LOA) of the measurements were calculated using the intraclass correlation coefficient (ICC) and Bland-Altman plot to examine the reliability and discrepancies between the measurements. Results: The results of the mean values of the flexion angles for the active range of motion (AROM) of the finger joints showed large angular differences in the finger joints, except for the MCP of the thumb. In the inter-rater reliability analysis according to the measurement method, the ICC (2, 1) value showed a low level close to 0, and the mean difference by the Bland-Altman plot showed a value greater than 0, showing a pattern of discrepancy. The 95% LOA had a wide range of differences. Conclusion: This study is a preliminary study investigating the usefulness of the soft sensor glove, and the reliability analysis showed a low level of reliability and inconsistency. However, if future studies can overcome the limitations of this study and the technical problems of the soft sensor glove in the development stage, it is suggested that the measurement instrument can show more accurate measurement and higher reliability when measuring ROM with UG.