• Title/Summary/Keyword: standard impact source

Search Result 84, Processing Time 0.025 seconds

Deviation of sound pressure level in receiving room according to the heavy-weight floor impact sources and it's positions (중량 바닥충격음 충격원의 종류 및 위치에 따른 수음실 음압레벨 변화)

  • Ju, Mun Ki;Han, Myung Ho;Oh, Yang Ki
    • KIEAE Journal
    • /
    • v.9 no.4
    • /
    • pp.23-28
    • /
    • 2009
  • Standard sound source currently used in heavy-weight floor impact sounds that cause many social problems has excessive low-frequency energy within a range from 63 Hz to 125 Hz, and is difficult to evaluate and measure. To solve these problems, studies are widely performed using a new impact source, the impact ball. In this study, the sound fields in a receiving room were compared and analyzed according to the current impact source, the bang machine, and the impact ball. And deviation of sound pressure level according to the impact source positions were compared. In case of impact ball, the sound pressure level was lower at 63 Hz and below and higher at 125 Hz and above. The same trend was observed at the low-frequency range on the horizontal and vertical planes, regardless of the type of the impact source, which showed the influence of the room mode. There was a problem with the variations in the sound pressure level according to the size or shape of the receiving room. And it also shows that change of source positions may effect the single number rating scheme.

An Experimental Study or the Prediction Method of Floor Impact Sound Insulation Performance in Apartment House Using Impedance Method(II) (임피던스법을 이용한 공동주택 바닥 충격음 차음성능 예측방법에 관한 실험 적 연구(II) - 경량 표준충격원을 중심으로 -)

  • 김재수;장길수;김선우
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 1992
  • In the previous paper, we report a practical floor impact sound level prediction method for a heavyweight impact source(Tire), soft impact source such as children jumping and running. According to these results, the calculated value and the measured value correspond comparatively well, regardless of differences in the floor structures. And the floor impact sound for a heavyweight impact source, soft source was strongly influenced by structural factors such as floor slab stiffness and peripheral support conditions. But the floor impact sound for a light impact source (Tapping machine), hard impact source was influenced by resilient layers, composed of multi-layer in floor structures. Thus, In this paper, 4 actual floor structures, all with differing resilient layers, were calculated using impedance method. When these calculation values were compared with the measured values, approximately all the values fell with one rank of the sound insulation grade, reference curve(L curve) by the JIS standard. So, a sample of measured values and calculated values from floor structures is presented to show the accuracy and appropriateness of the impedance method in domestic.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Prediction of Concrete Slab Acceleration and Floor Impact Noise Using Frequency Response Function (주파수 응답함수를 이용한 콘크리트 슬래브 가속도 및 바닥충격소음 예측)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.483-492
    • /
    • 2014
  • Uncomfortable feelings of occupants by indoor floor impact noise in a residential building are not accurately represented by the floor impact noise from a standard impact source. It is due to the characteristics of standard impact sources, which are different from the impact forces produced by occupants. It varies significantly by impact source, and it is not easy to be replicated for testing. As a result, the indoor floor impact noise under different acoustic conditions cannot be directly compared. Using frequency response function(FRF), which represents the input-output relationships of a dynamic system, it is possible to examine the characteristics of the system. Especially, FRF can predict the response of a linear dynamic system subjected to various excitation. To determine the relationship between impact force and the corresponding response of dynamic system in residential building, the acceleration response of a concrete slab and the floor impact noise in the living room, produced by bang-machine and rubber-ball excitation, were measured. The test results are compared to the estimates based on FRF and impact force spectrum.

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

Subjective response evaluation items for floor impact noise using various impactors (다양한 충격원에 대한 바닥충격음 주관반응 평가항목 분석)

  • Hyeon-Ku Park;Seonhwa Lee;Minjeong Song
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.584-593
    • /
    • 2023
  • This study attempted to develop repetitive impact sources similar to real-life floor impact noise and to find an assessment approach corresponding to this new impact source. The necessity for the development of the new impact source arises from the fact that issues related to floor impact noise in actual residential buildings mainly stem from children running. However, the standard impact sources which have been used for measuring and evaluating floor impact noise are of single-impulse type, which differs from the actual problematic impact sources. The study encompassed 18 evaluation items, and the results suggest that items applicable for assessing floor impact noise include psychological effects (annoying, becoming angry), disturbances to daily life (interference with sleep, disruption of relaxation), and physiological effects (elevated blood pressure). These items can be employed individually and, depending on the type of evaluation for floor impact noise, can be selectively utilized. By doing so, more comprehensive evaluations of auditory experiments in laboratories or assessments of residential noise in living environments related to floor impact noise could be conducted.

Evaluation of Floor Impact Sound Isolation in a Dry Floor System (건식 바닥구조의 바닥충격음 차단성능 평가)

  • You, Jin;Ryu, Jong-Kwan;Jeon, Jin-Young;Lee, Chung-Hwa;Kim, Chul-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.950-953
    • /
    • 2005
  • Floor impact sounds from two different floor systems were measured. One of the two floor systems is a dry floor system (with 150mm concrete slab) and the other is a standard floor system (210mm concrete slab). Real impact sources such as jumping and running of children were used as well as standard impact sources (bang machine, impact ball and tapping machine) to evaluate sound Isolation of the two floor systems. Subjective evaluations of the floor impact sound isolation performance for the two systems were also conducted by the methods of 3 scales & 9 categories, paired comparison and semantic differentials. Measurement results indicate that floor impact sound isolation performance of the dry floor was better than that of standard floor in both cases of real and standard impact sources. The subjects in auditory experiments also evaluated the dry floor as a better sound isolation system.

  • PDF

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

Investigation of receiving position in the measurement method for floor impact sound in a testing building (표준시험동 바닥충격음 측정위치에 대한 고찰)

  • Lee, Sin-Young;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.964-968
    • /
    • 2007
  • The measurement of floor impact sound have been standardized in KS 2810-1 and 2. The height of receiving microphones position is specified in the standard as 1.2m which is almost half height of apartment rooms as a listening position. In this study, receiving positions are investigated by measuring the distribution of sound pressure levels at 792 receiving microphone positions in the standard testing building. Standard impact sources, tapping machine and impact ball, are driven on the center position in the source room where is located at the above floor. It was found that the distribution of sound pressure levels in the receiving room indicates significant deviation at different frequencies there is more than 5dB drop at 63Hz but 2dB rise at 125Hz at a height of 1.2m when the impact ball is driven, in the other case of a generating tapping machine there is more than 2dB rise at 125Hz at a height of 1.2m due to room modes.

  • PDF

Investigation of the heavy-weight floor impact sound field in a testing building with bearing wall structure (벽식구조 표준시험동에서 중량충격음장에 관한 연구)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.969-973
    • /
    • 2007
  • The heavy-weight floor impact sound field of the receiving room in a testing building with bearing wall structure was investigated using bang machine and impact ball. The sound field was investigated through the impact sound pressure level distribution by the field measurement and computational analysis. Predicted sound field using the computational analysis agree with measurement result in the low frequency band. Result shows that standard deviations of the single number rating value are about 2dB in each impact source. Particularly, impact sound pressure level at 120cm height in 63Hz octave band was 5dB lower than spatial averaging value. It was found that receiving positions in the ministry of construction and transportation notice should be reconsidered.

  • PDF