• Title/Summary/Keyword: stamp fabrication

Search Result 60, Processing Time 0.036 seconds

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

Fabrication of Organic Thin Film Transistor(OTFT) for Flexible Display by using Microcontact Printing Process (미세접촉프린팅공정을 이용한 플렉시블 디스플레이 유기박막구동소자 제작)

  • Kim K.Y.;Jo Jeong-Dai;Kim D.S.;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.595-596
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and low-temperature processes. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing which is high-resolution lithography technology using polydimethylsiloxane(PDMS) stamp. The OTFT array with dielectric layer and organic active semiconductor layers formed at room temperature or at a temperature tower than $40^{\circ}C$. The microcontact printing process using SAM(self-assembled monolayer) and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even nano size, and reduced the procedure by 10 steps compared with photolithography. Since the process was done in low temperature, there was no pattern transformation and bending problem appeared. It was possible to increase close packing of molecules by SAM, to improve electric field mobility, to decrease contact resistance, and to reduce threshold voltage by using a big dielecric.

  • PDF

The Development of Single-Step UV-NIL Tool Using Low Vacuum Environment and Additive Air Pressure (저진공 Single-step UV 나노임프린트 장치 개발)

  • Kim K.D.;Jeong J.H.;Lee E.S.;Bo H.J.;Shin H.S.;Choi W.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.155-156
    • /
    • 2006
  • UV-NIL is a promising technology for the fabrication of sub-100 nm features. Due to non-uniformity of the residual layer thickness (RLT) and a strong possibility of defects, many UV-NIL processes have been developed and some are commercially available at present, most are based on the 'step-and-repeat' nanoimprint technique, which employs a small-area stamp, much smaller than the substrate. This is mainly because, when a large-area stamp is used, it is difficult to obtain acceptable uniform residual layer thickness and/or to avoid defects such as air entrapment. As an attempt to enable UV_NIL with a large-area stamp for high throughput, we propose a new UV-NIL tool that is able to imprint 4 inch wafer in a low vacuum environment at a single step.

  • PDF

Fabrication of Flexible OTFT Array with Printed Electrodes by using Microcontact and Direct Printing Processes

  • Jo, Jeong-Dai;Lee, Taik-Min;Kim, Dong-Soo;Kim, Kwang-Young;Esashi, Masayoshi;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.155-158
    • /
    • 2007
  • Printed organic thin-film transistor(OTFT) to use as a switching device for an organic light emitting diode(OLED) were fabricated in the microcontact printing and direct printing processes at room temperature. The gate electrodes($5{\mu}m$, $10{\mu}m$, and $20{\mu}m$) of OTFT was fabricated using microcontact printing process, and source/drain electrodes ($W/L=500{\mu}m/5{\mu}m$, $500{\mu}m/10{\mu}m$, and $500{\mu}m/20{\mu}m$) was fabricated using direct printing process with hard poly(dimethylsiloxane)(h-PDMS) stamp. Printed OTFT with dielectric layer was formed using special coating system and organic semiconductor layer was ink-jet printing process. Microcontact printing and direct printing processes using h-PDMS stamp made it possible to fabricate printed OTFT with channel lengths down to $5{\mu}m$, and reduced the process by 20 steps compared with photolithography. As results of measuring he transfer characteristics and output characteristics of OTFT fabricated with the printing process, the field effect characteristic was verified.

  • PDF

Fabrication of Micropattern by Microcontact Printing (미세접촉인쇄기법을 이용한 미세패턴 제작)

  • 조정대;이응숙;최대근;양승만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1224-1226
    • /
    • 2003
  • In this work, we developed a high resolution printing technique based on transferring a pattern from a PDMS stamp to a Pd and Au substrate by microcontact printing Also, we fabricated various 2D metallic and polymeric nano patterns with the feature resolution of sub-micrometer scale by using the method of microcontact printing (${\mu}$CP) based on soft lithography. Silicon masters for the micro molding were made by e-beam lithography. Composite poly(dimethylsiloxane) (PDMS) molds were composed of a thin, hard layer supported by soft PDMS layer. From this work, it is certificated that composite PDMS mold and undercutting technique play an important role in the generation of a clear SAM nanopattern on Pd and Au substrate.

  • PDF

Fabrication of Nanoscale Structures using SPL and Soft Lithography (SPL과 소프트 리소그래피를 이용한 나노 구조물 형성 연구)

  • Ryu Jin-Hwa;Kim Chang-Seok;Jeong Myung-Yung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.138-145
    • /
    • 2006
  • A nanopatterning technique was proposed and demonstrated for low cost and mass productive process using the scanning probe lithography (SPL) and soft lithography. The nanometer scale structure is fabricated by the localized generation of oxide patterning on the H-passivated (100) silicon wafer, and soft lithography was performed to replicate of nanometer scale structures. Both height and width of the silicon oxidation is linear with the applied voltagein SPL, but the growth of width is more sensitive than that of height. The structure below 100 nm was fabricated using HF treatment. To overcome the structure height limitation, aqueous KOH orientation-dependent etching was performed on the H-passivated (100) silicon wafer. Soft lithography is also performed for the master replication process. Elastomeric stamp is fabricated by the replica molding technique with ultrasonic vibration. We showed that the elastomeric stamp with the depth of 60 nm and the width of 428 nm was acquired using the original master by SPL process.

Polymeric Wavelength Filter Based on a Bragg Grating Using Nanoimprint Technique (나노 임프린트 기술을 이용한 폴리머 도파로 기반의 브래그 격자형 파장 필터)

  • Ahn, Seh-Won;Lee, Ki-Dong;Kim, Do-Hwan;Chin, Won-Jun;Lee, Sang-Shin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.267-271
    • /
    • 2006
  • A polymeric waveguide-type wavelength filter based on a Bragg grating has been proposed and fabricated using the simple nanoimpring technique, for the first time to our knowledge. An ultraviolet transparent stamp with the single-mode waveguide pattern incorporating a surface-relief-type Bragg grating was specially designed selective dry-etching process. Using this stamp, the device fabrication was substantially involving just a single-step process of imprint followed by polymer spin-coating. The achieved maximum reflection was higher than 25 dB at the center wavelength of 1569 nm. And the 3-dB bandwidth was 0.8 nm for the device length of 1.5 cm.

Evaluation of Multi-axis Robotic Manufactured Thermoplastic Composite Structure Using Stamp-forming Process (다관절 로봇 암 기반 고속 열 성형 공정을 활용한 열가소성 복합재 부품 평가)

  • Ho-Young Shin;Ji-Sub Noh;Gyu-Beom Park;Chang-Min Seok;Jin-Hwe Kweon;Byeong-Su Kwak;Young-Woo Nam
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.321-328
    • /
    • 2023
  • This study developed the in-situ stamp-forming process using the multi-axis robotic arm to fabricate thermal composite parts. Optimal fabrication parameters with the multi-axis robotic arm were determined using finite element analysis and these parameters were further refined through the practical manufacturing process. A comparison between the manufactured parts and finite element analysis results was conducted regarding thickness uniformity and wrinkle distribution to confirm the validity of the finite element analysis. Additionally, to evaluate the formability of the manufactured composite parts, measurements of crystallinity and porosity were taken. Consequently, this study establishes the feasibility of the In-situ stamp-forming consolidation using a robotic arm and verifies the potential for producing composite parts through this process.