• Title/Summary/Keyword: stainless steel wire mesh

Search Result 15, Processing Time 0.03 seconds

Evaluation of Ductility for Bridge Piers Retrofitted by Stainless Steel Wire Mesh (스테인레스 스틸 와이어 메쉬 보강에 따른 교각의 연성능력 평가)

  • 김성훈;김대곤;이규남;김선호;김석희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.879-884
    • /
    • 2002
  • The objective of this study is to investigate the seismic capacity of the non-seismically detailed RC bridge piers before and after applying a seismic retrofitting method using stainless steel wire mesh. Total nine circular section RC piers were constructed. Different lap splice longitudinal reinforcement details were adapted for four specimens and various types of stainless steel wire mesh were applied for the remaining five specimens. Harmonic cyclic lateral load was applied on each specimen under a constant axial load. The test results indicated that the existing circular piers have low seismic capacity while the stainless steel wire mesh retrofitting method improves the seismic capacity considerably. In addition, test results revealed that the circular section piers could have a considerable amount of ductility if longitudinal bars are not lap-spliced in potential plastic hinge zone. Based on this experimental study it could be concluded that the seismic performance, that is ductility and energy absorption capacity, of the non-seismically detailed RC bridge piers would be increased by applying the stainless steel wire mesh seismic retrofitting method.

  • PDF

Strengthening of axially loaded concrete columns using stainless steel wire mesh (SSWM)-numerical investigations

  • Kumar, Varinder;Patel, P.V.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.979-999
    • /
    • 2016
  • Stainless steel wire mesh (SSWM) is an alternative material for strengthening of structural elements similar to fiber reinforced polymer (FRP). Finite element (FE) method based Numerical investigation for evaluation of axial strength of SSWM strengthened plain cement concrete (PCC) and reinforced cement concrete (RCC) columns is presented in this paper. PCC columns of 200 mm diameter with height 400 mm, 800 mm and 1200 mm and RCC columns of diameter 200 mm with height of 1200 mm with different number of SSWM wraps are considered for study. The effect of concrete grade, height of column and number of wraps on axial strength is studied using finite element based software ABAQUS. The results of numerical simulation are compared with experimental study and design guidelines specified by ACI 440.2R-08 and CNR-DT 200/2004. As per numerical analysis, an increase in axial capacity of 15.69% to 153.95% and 52.39% to 109.06% is observed for PCC and RCC columns respectively with different number of SSWM wraps.

A Study on the Minimization of Dent Marks due to Mold Tooth Teeth Generated During Wave Forming of Stainless Steel Wire (STS 316Ti) (스테인리스 스틸 강선(STS 316Ti)의 웨이브 성형 시 발생되는 금형 치절에 의한 찍임 자국 최소화에 관한 연구)

  • Moon, Hyunchol;Bae, Soohan;Sung, Hyokyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.98-106
    • /
    • 2022
  • Among the parts assembled in the gas receiver of a marine engine, the titanium alloy stainless steel (STS 316Ti) wire mesh serving as a filter was broken, and the related part, the turbine fan of the turbocharger, was damaged. In this study, a sample of the grid wire mesh was collected and the cause of breakage was analyzed, and a method of minimizing the dent mark caused by the mold during wire forming, which is one of the most direct causes, was studied. In addition, the optimum mold shape was realized through FEM simulation, and the wire wave molding machine capable of controlling the speed was improved by supplementing the problems of the existing wire wave molding machine, thereby improving durability with minimal dent marks.

Torsional strengthening of RC beams using stainless steel wire mesh -Experimental and numerical study

  • Patel, Paresh V.;Raiyani, Sunil D.;Shah, Paurin J.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.391-401
    • /
    • 2018
  • Locally available Stainless Steel Wire Mesh (SSWM) bonded on a concrete surface with an epoxy resin is explored as an alternative method for the torsional strengthening of Reinforced Concrete (RC) beam in the present study. An experiment is conducted to understand the behavior of RC beams strengthened with a different configuration of SSWM wrapping subjected to pure torsion. The experimental investigation comprises of testing fourteen RC beams with cross section of $150mm{\times}150mm$ and length 1300 mm. The beams are reinforced with 4-10 mm diameter longitudinal bars and 2 leg-8 mm diameter stirrups at 150 mm c/c. Two beams without SSWM strengthening are used as control specimens and twelve beams are externally strengthened by six different SSWM wrapping configurations. The torsional moment and twist at first crack and at an ultimate stage as well as torque-twist behavior of SSWM strengthened specimens are compared with control specimens. Also the failure modes of the beams are observed. The rectangular beams strengthened with corner and diagonal strip wrapping configuration exhibited better enhancement in torsional capacity compared to other wrapping configurations. The numerical simulation of SSWM strengthened RC beam under pure torsion is carried out using finite element based software ABAQUS. Results of nonlinear finite element analysis are found in good agreement with experimental results.

Response of Bridge Piers Retrofitted by Stainless Steel Wire under Simulated Seismic Loading (내진 모사하중에 의한 스테인레스강 와이어 보강 교각의 응답)

  • Choi, Jun Hyeok;Kim, Sung Hoon;Lee, Do Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2009
  • In the present study, a new seismic retrofitting method that employs both a stainless steel wire mesh and a permeable polymer concrete mortar was proposed for reinforced concrete bridge piers with nonseismic design details. For this purpose, a total of six nonseismically designed bridge piers were tested under lateral load reversals. The test results reveal that nonseismically designed piers with lap splices need to be retrofitted to resist earthquake induced forces. In addition, it was proven that the proposed retrofitting method can be useful in improving the strength, stiffness, and energy dissipation capacities of bridge piers designed nonseismically. It is thus expected that the proposed method may provide an improved ductility capacity without sudden softening of strength for bridge piers excursing inelastic displacement range.

Fluid Flow Resistance in a Channel with Wire-screen Baffles (와이어 스크린 배플이 설치된 채널에서의 유체유동 저항)

  • Oh, S.K.;Ary, B.K.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.36-41
    • /
    • 2009
  • An experimental investigation was conducted to examine the fluid flow resistance in the rectangular channel with two inclined wire screen baffles. Two different types of wire screens; dutch weave and plain weave, were used as baffle devices in this experiment. Three kinds of baffles with different mesh specifications were made up of dutch type and four different kinds of baffles were made up of plain weave type. The stainless steel wire screen baffles were mounted on the bottom wall with varied angle inclination. Reynolds numbers were varied from 23,000 to 57,000. Results show that the mesh number of baffles plays an important role on friction factor behaviour. It is found that the baffle with the most number of meshes (type SA) has the highest fluid flow resistance.

  • PDF

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding

  • Jee, Jeong-Hyun;Ahn, Hyo-Won;Seo, Kyung-Won;Kim, Seong-Hun;Kook, Yoon-Ah;Chung, Kyu-Rhim;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.44 no.5
    • /
    • pp.236-245
    • /
    • 2014
  • Objective: To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Methods: Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with preadjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Results: Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Conclusions: Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency.

Measurements of Transmittances and Calculations of Fundamental Radiative Properties (투과율의 측정 및 이를 이용한 복사물성치의 계산)

  • Hwang, Yong-Ha;Park, Seung-Ho;Lee, Young-Soo
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.29-37
    • /
    • 1994
  • Radiative charaacteristics of glass windows and porous absorbing media which can be used for a solar air heater are determined through the measurements of spectral transmittances. Those in the visible range are measured by the UV-IR spectrometer. Refractive index of glass are obtained by the comparison of the measured transmittances and the correlations derived from the electromagnetic theory and are compared to the theoretical ones calculated from the classical dispersion theory. Absorption and back-scattering coefficients of 15-mesh stainless wire screens are calcuated by the comparison of the measured transmittances and the correlations derived from the two flux model.

  • PDF

A Theoretical Study for the Design of Solar Air Heaters Using Porous Material (다공성 물질을 이용한 공기용 태양열 집열기의 설계를 위한 이론적 연구)

  • Hwang, Yong-Ha;Park, Seung-Ho;Kim, Jong-Eok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.79-90
    • /
    • 1993
  • A theoretical study is conducted for the design of solar air heaters using porous material. Radiative characteristics of glazing and porous absorbing media are found through spectral transmittances measured by the Visible spectrometer and the FT-IR. Using those characteristics the efficiencies of collectors are calculated one-dimensionally with the use of the Two-Flux radiation model. The efficiencies increase, as the air flow rates or albedos in the visible range increase, and as albedos in the IR range decrease. The optimum thickness of the porous medium of 15-mesh stainless steel wire screens is 0.001m, which represents the opacity of one.

  • PDF