• 제목/요약/키워드: stage combustion

검색결과 321건 처리시간 0.024초

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

The Characteristics of Pulverized Coal Combustion in the Two Stage Cyclone Combustor

  • Joo, Nahm-Roh;Kim, Ho-Young;Chung, Jin-Taek;Park, Sang-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1112-1120
    • /
    • 2002
  • Numerical investigations on air staging and fuel staging were carried out with a newly designed coaxial cyclone combustor, which uses the method of two stage coal combustion composed of pre-combustor and main combustor. The pre-combustor with a high air/fuel ratio is designed to supply gas at high temperature to the main combustor. To avoid local high temperature region in this process, secondary air is injected in the downstream. Together with the burned gas supplied from the pre-combustor and the preheated air directly injected into main combustor, coals supplied through the main burner react rapidly at a low air/fuel ratio. Strong swirling motion of cyclone combustor keeps the wall temperature high, which makes slagging combustion possible. Alaska, US coal is used for calculations. Predictions were made for various coal flow rates in the main combustor for fuel staging and for the various flow rate of secondary air in the pre-combustor for air staging. In-scattering angles are also chosen as a variable to increase residence times of coal particles. Temperature fields and particle trajectories for various conditions are described. Predicted temperature variations at the wall of the combustor are compared with corresponding experimental data and show a similar trend. The in-scattering angle of 20° is recommended to increase the combustion efficiency in the main chamber.

2단분사법에 따른 예혼합압축착화엔진의 연소 및 배기특성 (Effects of Two-Stage Injection on Combustion and Exhaust Emission Characteristics in a HCCI Engine)

  • 국상훈;박철웅;최욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.32-39
    • /
    • 2004
  • HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.

2단 연소방법에 의한 미분탄 연소기의 특성에 관한 이론적 연구 (Theoretical Study on the Characteristics of Pulverized Coal Combustor with 2 Stage Combustion)

  • 주남로;최상일;김호영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1997년도 제15회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.103-112
    • /
    • 1997
  • In the combustion of the pulverized coal compared with that of liquid fuel or gaseous fuel, serious pollutants such as ash, $NO_x$ and $SO_x$ are released to surroundings. The objective of this study is the reduction of such pollutants in the combustion process. The modeling of cyclone combustor which uses the method of two stage combustion was carried out. The main burner length, scattering angle and air/fuel ratio were considered as parameters. The results show that the shorter the main burner length is, the less the amounts of coals which exit the combustor directly are, but the scattered input of coal is required anyway in order to collect all ashes. It is recommended that the shorter the main burner length is, the less the scattering angle is. And in the case of the scattered input compared with no scattering, the temperature in the combustor is more uniform and the amount of volatile is more reduced.

  • PDF

레이저 탄성산란법, 여기적열법, 자발광을 이용한 가시화 디젤엔진의 후기연소의 2차원 soot 분포 측정 (Measurments of 2-D Image Soot Distribution in Late Combustion Stage Using Elastic Scattering, Laser-Induced Incandescence and Flame Luminosity)

  • 노승민;원영호;박정규;최인용;전광민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.162-167
    • /
    • 2000
  • Soot formation and oxidation is closely related to the combustion phenomena inside a diesel engine. Laser-based diagnostics provide a means for improving our understanding of diesel combustion, because they have highly temporal and spatial ability. To understand the soot behavior we did preliminary study by taking flame luminosity photographs and 2-D imaging soot distribution using Laser Elastic Scattering(LIS) and Laser-Induced Incandescence(LII). From the data we found that soot concentration was high in the bowl and disappeared from the central region in the late combustion stage.

  • PDF

다단연소 기술 적용 전후 시멘트 소성설비의 NOx 배출 사례 연구 (Case Study on NOx Emissions from Cement Kiln before and after Applying Multi-stage Combustion Technology)

  • 최재원;백주익;김장중;원필성
    • 한국건설순환자원학회논문집
    • /
    • 제11권3호
    • /
    • pp.267-275
    • /
    • 2023
  • 시멘트 산업은 다양한 가연성 폐기물을 천연자원인 유연탄을 대체하는 연료로 사용함으로써 폐기물 처리 문제 해결에 기여하고 있다. 시멘트 제조공정에서 더 많은 폐합성수지 등 대체연료를 사용하기 위해서는 대체연료를 안정적으로 연소시키고, 특히 NOx와 같은 유해물질의 대기배출을 저감할 필요가 있다. 본 연구는 폐합성수지 등 대체연료의 사용량을 증대시키면서 NOx와 같은 대기배출 유해물질의 발생량을 저감하는 기술의 하나인 다단연소 공정에 대한 사례연구다. 실제 시멘트 제조설비에의 기술 적용 전후 연료 사용량, NOx 배출 등을 비교하여 효과를 평가한 결과, 유연탄의 사용량은 38 % 감소, 폐합성수지 사용량은 122 % 증가하면서 동시에 NOx 배출량은 17 % 저감된 것으로 평가되어 다단연소에 의한 폐합성수지 사용 증대 및 NOx 배출 저감 효과가 유효함을 확인하였다.

액체로켓엔진의 2단 시동에 관한 연구 (A Study on the 2-Stage Startup of Liquid Rocket Engine)

  • 박순영;조원국
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.324-327
    • /
    • 2008
  • Two stage startup of high thrust liquid rocket engine can reduce the abrupt impulse to the vehicle and engine by changing oxidizer flow rate to the combustion chamber. Also it ensures stable ignition of combustion chamber against hard start and to prevent pump stall by the sudden supply of large mass flow rate. However high discharge pressure of oxidizer pump or temperature rise in gas generator may be a problem in applying the preliminary stage. To solve this problem, we analyzed the effect of the slope of oxidizer pump's head curve and the oxidizer mass flow rate to combustion chamber during preliminary stage using the rocket engine startup analysis code. A moderate slope(${\circleddash}{\sim}$-3) of head curve and 80% mass flow rate during preliminary stage can reduce the oxidizer pump discharge pressure by 15 to 20% comparing with the condition of ${\circleddash}$=-4.37 head curve and 70% mass flow rate. Also it can maintain the turbine inlet temperature rise within 50K from the nominal value.

  • PDF

Multi-cavity Piston에 의한 디젤기관의 연소성 향상에 관한 연구 (The Study for Improving the Combustion in a D.I. Diesel Engine using Multi-cavity Piston)

  • 박철환;방중철
    • 한국연소학회지
    • /
    • 제20권3호
    • /
    • pp.13-20
    • /
    • 2015
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several cavities on the piston crown to intensify the squish during the compression stroke in order to improve the atomization of fuel, we call this multi cavity piston in this paper. The other is a toroidal single cavity piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

다단연소사이클 엔진 시스템 기술검증시제 연소성능 평가 (Combustion Characteristics of Technology Demonstration Model for Staged Combustion Cycle Engine)

  • 임지혁;우성필;전준수;이정호;이광진;한영민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.108-111
    • /
    • 2017
  • 정지궤도용 우주발사체에는 고성능 상단엔진이 필수적이며 높은 비추력을 가지는 다단연소사이클 엔진이 적합하다. 터보펌프, 예연소기, 연소기, 공급계 시스템으로 구성된 9톤급 다단연소사이클 엔진 시스템의 기술검증시제를 제작하여 나로우주센터 3단 엔진 연소시험설비에서 3초 지상연소시험을 수행하였다. 엔진 시스템의 시동, 점화, 연소 및 종료가 정상적으로 수행되었으며 주요 성능 변수를 평가하였다.

  • PDF

2단 연소에 의한 NO 배출 저감에 관한 연구 (Reduction of NO Emission by Two-Stage Combustion)

  • 유현석;최정환;오신규
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.