• Title/Summary/Keyword: stack effect

Search Result 324, Processing Time 0.027 seconds

Development of Multiple Layers Insulation for SOFC (SOFC를 위한 고온용 적층단열재 개발)

  • CHOI, CHONGGUN;HWANG, SEUNG-SIK;CHOI, GYU-HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.386-392
    • /
    • 2018
  • Fuel cells are known as eco - friendly energy facilities that can use heat energy and electric energy at the same time. Fuel cells are classified according to the temperature and material used, and solid oxide fuel cell (SOFC) is relatively high temperature ($700-800^{\circ}C$). SOFC requires a hot box consisting of a high temperature stack, a reformer, a burner, and the heat exchangers in order to use energy efficiently. The hot box needs to maintain heat insulation performance at high temperature to reduce heat loss. However, Fibrous insulation, which is widely used, needs to be improved because it has a disadvantage that the thermal conductivity is rapidly increased due to the increase of temperature. Therefore, this study was carried out to develop a thermal insulation, which is applied to multiple layers insulation (MLI) technic, that can be used under SOFC operating conditions and prevent a drastic drop in thermal conductivity at high temperature. The developed insulation is consist of a thermally conductive material, a spacer, and a reflective plate. The thermal conductivity of the insulation was measured by in the thermal conductivity measuring device at high temperature range. As a result, it was confirmed that the developed layers insulation have an good thermal conductivity (0.116 W/mK) than fibrous insulation (0.24 W/mK) as a radiation shielding effect at a high temperature of 1,173 K.

The Effect of Thermal Management on the Performance of a Polymer Electrolyte Membrane Fuel Cell System (PEMFC의 열관리가 시스템의 성능에 미치는 영향)

  • Lee, Jeong-Ho;Myung, No-Sung;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.593-601
    • /
    • 2011
  • An analysis program to simulate the operation of a polymer electrolyte membrane fuel cell (PEMFC) system was set up, and system operation with variations in the working conditions of various components (especially the thermal management system) was simulated. The entire system included a PEMFC stack and balance-of-plant components such as an air-supply unit, a fuel-supply unit, and a heat-management unit (cooling system). Thermodynamic models of all components were made to evaluate the design performance of the entire system, and then off-design models were set up to simulate the operation of the entire system under arbitrary working conditions. A parametric study was carried out to examine the effects of varying the operating conditions (especially the ambient conditions and the operating conditions of the cooling system) on the operation and performance of the entire system.

A Study on Concurrent Fire Appearance through Openings (개구부를 통한 동시다발적인 화재성상에 관한 연구)

  • Min, Se-Hong;Lee, Jae-Moon
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.90-96
    • /
    • 2012
  • Since vertical flame spread speed on exterior materials is much faster than horizontal fire, analysis of its fire characteristic is required. For the study of vertical fire pattern created by penetrating windows or openings from the exterior wall of buildings, the research is based on the fire simulation for an aluminum-complex-panel with which is commonly used as exterior materials and consists of polyethylene core material. As a result, the flame reaches the 2nd floor after 135 seconds in the early stage of fire, the 10the floor after 470 seconds and the 30th floor, the highest floor, after 711 seconds. The result shows that fire spread abruptly expands on upper floor due to stack effect of a turbulent flow or exterior materials. In consequence, we can confirm a serious problem that a conflagration of a building through an opening that is equipped with the exterior-materials spreads into interior of building at that same time.

A 6Gbps 1:2 Demultlplexer Design Using Micro Stacked Spiral inductor in CMOS Technology (Micro Stacked Spiral Inductor를 이용한 6Gbps 1:2 Demultiplexer 설계)

  • Choi, Jung-Myung;Burm, Jin-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.58-64
    • /
    • 2008
  • A 6Gbps 1:2 demultiplexer(DEMUX) IC using $0.18{\mu}m$ CMOS was designed and fabricated. For high speed performance current mode logic(CML) flipflop was used and inductive peaking technology was used so as to obtain higher speed than conventional Current mode logic flipflop. On-chip spiral inductor was designed to maximize the inductive peaking effect using stack structure. Total twelve inductors of $100{\mu}m^2$ area increase was used. The measurement was processed on wafer and 1:2 demultiplexer with and without micro stacked spiral inductors were compared. For 6Gbps data rate measurement, eye width was improved 7.27% and Jitter was improved 43% respectively. Power consumption was 76.8mW and eye height was 180mV at 6 Gbps

A study on temperature characteristic of the gases supplied to SOFC system by utilizing the ship exhaust gas (선박 배기가스 활용에 따른 SOFC 시스템 공급가스의 온도특성에 관한 연구)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.822-828
    • /
    • 2013
  • Since the operating temperature of Solid Oxide Fuel Cell (SOFC) is high, the heat management of the gases supplied to fuel cell system is important. In this paper, the temperature characteristic of the gases supplied to the anode and the cathode of the fuel cell is studied in case of utilizing the waste heat contained in the ship exhaust gas as a heat source to heat up the fuel, gas and water supplied to a 500kW SOFC system for a ship power. For the fuel cell system proposed in this paper, the temperature of gases supplied to the anode and the cathode was the highest temperature at 963K when the exhaust gas of the fuel cell was utilized as the heat source for gases supplied to fuel cell system instead of utilizing the ship exhaust gas. In addition, the engine power did not effect on the temperature of gases supplied to the fuel cell stack.

High-Voltage Liquid-Electrolyte Microbatteries Inspired from Electric Eels (전기뱀장어의 전기발생을 모사한 고전압 액체 전해질 미소전지)

  • Kim, Mun-Chul;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.469-473
    • /
    • 2009
  • We present high-voltage liquid-electrolyte microbatteries, inspired from the high-voltage generation mechanism of electric eels using serially connected multiple-cell arrays. In the microbatteries, we purge air into the electrolyte filled in a channel layer to isolate serially connected multiple cell arrays using three surface-tension valves (cell-front, outlet, and cell-end valves). Compared to the previous multi-cell stack or interconnection, present microbatteries provide a reduced multi-cell charging time. We have designed and characterized four different prototypes C1, C10, C20, and C40 having 1, 10, 20, and 40 cells, respectively. In the experimental study, the threshold pressures of cell-front, outlet, and cell-end valves were measured as $460{\pm}47$, $1,000{\pm}53$, and $2,800{\pm}170$ Pa, respectively. The average charging time for C40 was measured as $26.8{\pm}4.9$ seconds where the electrolyte and air flow-rates are 100 and $10{\mu}l/min$, respectively. Microbatteries showed the maximum voltage of 12 V (C40), the maximum power density of $110{\mu}W/cm^2$ (C40), and the maximum power capacity of $2.1{\mu}Ah/cm^2$ (C40). We also proposed a tapered-channel to remove the reaction gas from the cell chamber using a surface tension effect. The present microbatteries are applicable to high-voltage portable power devices.

A Study of Carbon NCF Prepreg Manufacturing and Stacking Pattern Optimal Design Using Structure Analysis (CFRP 적용을 위한 Carbon NCF Prepreg 제작 및 구조해석을 활용한 적층패턴 최적설계 연구)

  • Kim, S.;Shin, H.C.;Ha, Sung Kyu
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Recently, the fire rescue truck in problem proceed research it for the fast works action and for pass the small road. So we were research for weight reduction. In this study, the (NO. 5) fifth boom of the fire rescue truck have 288 mm(W) × 299 mm(D) × 3,691 mm(L) with a maximum load of 876 kg and the thickness of 3 mm of the Steel Boom. This changing of Steel (STRENX960) to CFRP was weave Carbon Fiber NCF (±45°, 2axis) and then it make the NCF Prepreg. This process was designed based on structural analysis, the effects of NCF Prepreg (±45°) on torsion were identified, and the optimal design was made with Stacking Pattern (b). Stack patterns were optimized for levels equal or higher than existing Steel Boom and CFRP Boom stacked in the UD direction, and finally, the lightening effect on weight of approximately 49.6% of the steel was identified.

An Estimation of Piezoelectric Power as Connection Methods of Piezoelectric Ceramic (압전세라믹 연결방식에 따른 전력생산 평가 연구)

  • Kwon, Soo-Ahn;Lee, Jae-Jun;Moon, Hak-Yong;Ryu, Seung-Ki
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2012
  • Natural disasters such as hurricanes, floods frequently occurs in the world. The cause of the natural disasters that occurs due to global warming because of increasing of global greenhouse gas emissions. To prevent the global warming, lots of researchers are studying renewable energy area. In order to protect grobal warming, government is trying to reduce green gas emissions under "Low Carbon Green Growth Policy" and investing climiate-friendly industries such as renewable energy harvesting. Research team is developing a renewable energy system that harvests mechanical energy imparted to road from driving vehicles and generates it into renewable electricity. This paper presents the research results of size effect of the piezoelectric ceramic and connection of piezoelectric ceramics. Power characteristics of piezoelectric ceramic as function of experimental variables were measured and analyzed.

Operating parameters in electrodialysis membrane processes for removal of arsenic in groundwater (지하수내 비소제거를 위한 전기투석 막여과 운전인자 연구)

  • Choi, Su Young;Park, Keun Young;Lee, Seung Ju;Choi, Dan Bi;Park, Ki Young;Kim, Hee Jun;Kweon, Ji Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.449-457
    • /
    • 2016
  • In this study, the effectiveness of electrodialysis in removing inorganic arsenic from groundwater was investigated. To evaluate the feasibility of the electrodialysis, operating parameters such as treatment time, feed concentration, applied voltage and superficial velocity were experimentally investigated on arsenic removal. The higher conductivity removal and arsenic removal efficiency were obtained by increasing applied voltages and operation time. An increase of salinity concentrations in arsenic polluted groundwater exerted no effects on the arsenic separation ratios. Arsenic polluted waters were successfully treated with stack voltages of 1.8 ~ 2.4 V/cell-pair to approximately 93.4% of arsenic removal. Increase flow rate in diluate cell gave positive effect to removal rate. However, increase of superficial velocity in the concentrated cell exerted no effects on either the conductivity reduction or on the separation efficiency. Hopefully, this paper will provide direction in selecting appropriate operating conditions of electrodialysis for arsenic removal.

The Design of 800MHz Band Repeater Antenna for Ship Base Station Application (선박기지국 응용을 위한 800MHz 대역 중계기용 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.219-222
    • /
    • 2007
  • In this paper, we have designed microstrip antenna of 800[MHz] band. It will be able to integrate TRS(Trunked Radio System), GSM(Global System for Mobile telecommunication) band including the CDMA(Code Division Multiple Access) band. we designed repeater and a base station antenna which is possible at the ship and marine of safety. It is improves a narrow bandwidth problem of microstrip antenna. It had L-shaped feeding structure at a rectangular patch and added the parallel L-slot that used a duplex resonance effect. Also for the improvement of profit the stack with the perpendicular. Designed frequency bandwith(VSWR 2:1) of the antenna showed good characteristic of 789${\sim}$1046[MHz] to 292[MHz](36%). Also the E-plan and H-plan all profit 6.4[dBi] above, the 3[dB] beam width showed the characteristic over the E-plan $44.7^{\circ} and H-plan $61.8^{\circ} to be improved.

  • PDF