DOI QR코드

DOI QR Code

A Study of Carbon NCF Prepreg Manufacturing and Stacking Pattern Optimal Design Using Structure Analysis

CFRP 적용을 위한 Carbon NCF Prepreg 제작 및 구조해석을 활용한 적층패턴 최적설계 연구

  • Kim, S. (Hanyang University of Mechanical Engineering) ;
  • Shin, H.C. (Korea Institute of Carbon Convergence Research Institute) ;
  • Ha, Sung Kyu (Hanyang University of Mechanical Engineering)
  • Received : 2019.11.05
  • Accepted : 2020.02.25
  • Published : 2020.02.29

Abstract

Recently, the fire rescue truck in problem proceed research it for the fast works action and for pass the small road. So we were research for weight reduction. In this study, the (NO. 5) fifth boom of the fire rescue truck have 288 mm(W) × 299 mm(D) × 3,691 mm(L) with a maximum load of 876 kg and the thickness of 3 mm of the Steel Boom. This changing of Steel (STRENX960) to CFRP was weave Carbon Fiber NCF (±45°, 2axis) and then it make the NCF Prepreg. This process was designed based on structural analysis, the effects of NCF Prepreg (±45°) on torsion were identified, and the optimal design was made with Stacking Pattern (b). Stack patterns were optimized for levels equal or higher than existing Steel Boom and CFRP Boom stacked in the UD direction, and finally, the lightening effect on weight of approximately 49.6% of the steel was identified.

기존 소방구조용 작업차에서 문제가 되고 있는 협소도로 진입의 어려움 및 구조를 위한 신속한 작업 전개 한계성을 극복하기 위한 목적으로 소형 구조작업차 연구가 진행되고 있으며 이에 따른 경량화 연구를 진행하였다. 본 연구에서는 소방 구조 작업차 5번 붐은 288 mm(W) × 299 mm(D) × 3,691 mm(L)이며 이에 걸리는 최대 하중은 876 kg이고, Steel Boom의 Thickness는 3 mm이다. Steel (STRENX960)을 CFRP 복합재로 변경하여 제작하기 위해 Carbon Fiber NCF (±45°, 2축)를 직조하고 이를 NCF Prepreg로 제작하였고 경량화와 강성, 강도를 극대화할 수 있는 최적설계 패턴을 제시하였다. 이 과정은 구조해석을 바탕으로 설계하였고, NCF Prepreg의 (±45°)가 비틀림에 미치는 영향을 확인했으며 적층패턴(b)로 최적설계 하였다. 기존 Steel Boom과 UD방향으로 적층한 CFRP Boom과 동등하거나 이상의 수준에 대한 적층패턴을 최적화하였고, 최종적으로 Steel 대비 약 49.6% 무게에 대한 경량화 효과를 확인하였다.

Keywords

References

  1. Tsai, S.W., and Wu, E.M., "A General Theory of Strength for Anisotropic Materials," Journal of Composite Materials, Vol. 5, 1971, pp. 58-80. https://doi.org/10.1177/002199837100500106
  2. Sharp, K., and Davies, K., "3D Non-crimp Fabrics for Composite Structures," Reinforced Plastics, Vol. 58, Iss. 5, 2014, pp. 52-53. https://doi.org/10.1016/S0034-3617(14)70216-4
  3. Wouters, M., "Effects of Fibre Bundle Size and Stitch Pattern on the Static Properties of Unidirectional Carbon-fibre Non-crimp Fabric Composites," EEIGM Master Thesis, SICOMP AB, Sweden, 2002.
  4. Wu, W., Wang, Q., and Li, W., "Comparison of Tensile and Compressive Properties of Carbon/Glass Interlayer and Intralayer Hybrid Composites," Journal of Materials, Vol. 11, No. 7, 2018, pp. 1105-1118. https://doi.org/10.3390/ma11071105
  5. Sassani, A., Ceylan, H., Kim, S., Gopalakrishnan, K., Arabzadeh, A., and Taylor, P.C., "Influence of Mix Design Variables on Engineering Properties of Carbon Fiber-modified Electrically Conductive Concrete," Journal of Construction and Building Materials, Vol. 152, 2017, pp. 168-181. https://doi.org/10.1016/j.conbuildmat.2017.06.172
  6. Lee, K., and Kim, J., "Controller Gain Tuning of a Simultaneous Multi-axis PID Control System Using the Taguchi Method," Journal of Control Engineering Practice, Vol. 8, No. 8, 2000, pp. 949-958. https://doi.org/10.1016/S0967-0661(99)00201-4
  7. Hwang, M.Y., and Kang, L.H., "Prediction of Material Properties of Carbon Fiber Prepreg in the Laminated Composite Using Reverse Analysis with Dynamic Characteristics," Journal of Composites Research, Vol. 32, No. 4, 2019, pp. 177-184.