• Title/Summary/Keyword: stabilizing robust control

Search Result 69, Processing Time 0.035 seconds

Robust $H_{\infty}$ Control for Bilinear Systems via State Feedback (상태 피드백에 의한 쌍일차 계통의 강인 $H_{\infty}$ 제어)

  • Kim, Young-Joong;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2037-2039
    • /
    • 2002
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties via state feedback. The suitable robustly stabilizing feedback control law can be constructed in term of solution to a state variable x-dependent quadratic Riccati equation using successive approximation technique. Also, the state feedback control law robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop bilinear system with parameter uncertainties and exogenous disturbance.

  • PDF

Structural Analysis and Design of Robust Motion Controllers for High-Accuracy Positioning Systems

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.467-467
    • /
    • 2000
  • In this paper, a structural design method of robust motion controllers for high-accuracy positioning systems, which makes it possible to predict the performance of the whole closed-loop system, is proposed. First, a stabilizing control input is designed based on robust internal-loop compensate.(RTC) for the system in the presence of uncertainty and disturbance. Next, using the structural characteristics of the RIC, disturbance attenuation properties and the performance of the closed-loop system determined by the variation of controller gains are analyzed. Through this analysis, in some specific applications, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. Finally, the proposed method is verified through experiments using a high-accuracy positioning system used in the semiconductor chip mounting devices.

  • PDF

Robust Backstepping Design of Nonlinear Systems Using Adaptation Strategy for Uncertaninties (불확실성 적응기법을 이용한 비선형 시스템의 강인 백스테핑 설계)

  • Kim, Dong-Heon;Kim, Eung-Seok;Yang, Hae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.605-613
    • /
    • 2001
  • In this paper, we design a robust adaptive controller for a nonlinear system with uncertainties to be rejected via disturbance adaptation law. The nonlinear system considered has unknown nonlinear functions being influenced by external disturbance. The upper bound of unknown nonlinear functions at each time is estimated by using a disturbance adaptation law. The estimated nonlinear functions are used to design a stabilizing function a control input. Tuning function is used to estimates unknown system parameter without overparametrization. A set-point regulation error converges to a residual set close to zero asymptotically. The effectiveness of the proposed controller is investigated by computer simulation.

  • PDF

A study on robust adaptive controller for processes with variable time-delays (시변 지연 시간을 갖는 프로세스의 로버스트 적응제어기에 관한 연구)

  • 강문식;전종암;이상배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.185-189
    • /
    • 1987
  • The controller with robustness described in this paper is designed for processes with variable time-delays. This adaptive mechanism includes servo and stabilizing compensators. In the proposed multivariable controller. knowledge of the system time-delay is not required.

  • PDF

Robust Control of Maglev Vehicles with Multimagnets Using Separate Control Techniques

  • Park, Jeon-Soo;Kim, Jong-Shik;Lee, Jin-Kul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1240-1247
    • /
    • 2001
  • A robust control design scheme using well-developed SISO techniques is proposed for maglev vehicles that are inherently unstable MIMO systems. The proposed separate control method has basically two control loops: a stabilizing loop by a pole-placement technique, and a performance loop using a novel optimal LQ loop-shaping technique. This paper shows that the coupling terms involved in maglev vehicles with multimagnets should not be neglected but compensated for their stability and performance robustness. The robustness properties of the proposed control system are then evaluated under variations of vehicle masses and air gaps through a computer simulation. This paper also describes the reason why the proposed control technique can be suggested as a tool using only SISO techniques in controlling unstable MIMO systems such as maglev vehicles.

  • PDF

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

Development of Hybrid Image Stabilization System for a Mobile Robot (이동 로봇을 위한 하이브리드 이미지 안정화 시스템의 개발)

  • Choi, Yun-Won;Kang, Tae-Hun;Saitov, Dilshat;Lee, Dong-Chun;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.157-163
    • /
    • 2011
  • This paper proposes a hybrid image stabilizing system which uses both optical image stabilizing system based on EKF (Extended Kalman Filter) and digital image stabilization based on SURF (Speeded Up Robust Feature). Though image information is one of the most efficient data for object recognition, it is susceptible to noise which results from internal vibration as well as external factors. The blurred image obtained by the camera mounted on a robot makes it difficult for the robot to recognize its environment. The proposed system estimates shaking angle through EKF based on the information from inclinometer and gyro sensor to stabilize the image. In addition, extracting the feature points around rotation axis using SURF which is robust to change in scale or rotation enhances processing speed by removing unnecessary operations using Hessian matrix. The experimental results using the proposed hybrid system shows its effectiveness in extended frequency range.

Multivariable $H_{\infty}$ disturbance rejection control for tandem cold mills (연속 냉간 압연기의 다변수 $H_{\infty}$ 외란제거 제어)

  • 김승수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.391-394
    • /
    • 1997
  • A H$_{\infty}$ control techniques with roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occurred in rolling stand itself of tandem cold mills. A robust controller to the disturbances is designed using H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and knowledge of disturbance spectrum in the frequency domain. And, non-standard H$_{\infty}$ control problem caused by selection of weight function having poles on j.omega. axis is discussed. The evaluation for the resultant controller composed by H$_{\infty}$ synthesis is done through computer simulations. The effectiveness of the proposed method is compared to those of the conventional LQ synthesis method and a feedforward controller against roll eccentricity, which was already studied.ied.

  • PDF

A Study on a Robust Motion Control of Flexible Manipulator with Five Joint for Untact Working in Filed Work-site

  • Kim, Hee-Jin;Kim, Seong-Il;Jang, Gi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.161-168
    • /
    • 2022
  • This study proposed a new approach to impliment a robusut control of comsumer-friendly flexible manipulator with five joint for untact working in filed work-site. The output redefinition approach was used to overcome the non minimum phase characteristic of the system. The new output is defined so that the zero dynamics related to this output are stable. The control strategy is based on an computed torque method which is applicable to a class of time-invariamt phase linear systems whose uncertainties appear in output loop stable. The controller is composed of a stabilizing joint controller and an output redefinition tracking controller. Experimental results are also presented to verify the effectiveness of the proposed control scheme.

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.