• Title/Summary/Keyword: stabilized PAN fiber

Search Result 17, Processing Time 0.017 seconds

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.219-221
    • /
    • 2015
  • In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm−1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm−1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.

Preparation and Properties of Quasi-Carbon Fibers from Stabilized PAN Fibers (안정화 PAN 섬유로부터 준탄소섬유의 제조 및 물성)

  • Cho, Dong-Hwan;Choi, Yu-Song;Park, Jong-Kyoo
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.575-586
    • /
    • 2001
  • Stabilized polyacrylonitrile (PAN) fibers can be transformed into quasi-carbon fibers with different properties depending on heat-treatment processing parameters at lower temperatures than temperature for the fabrication of carbon fibers. It has been investigated from the preliminary work that appropriate quasi-carbonization processes at about 1100$^{\circ}C$ strongly influence various properties of quasi-carbon fiber/polymer composite as well as quasi-carbon fiber itself. The objective of the present work is to prepare quasi-carbon fibers from stabilized PAN fibers using various quasi-carbonization cycles and to examine their properties. Two temperature regions, up to 800$^{\circ}C$ and above 1000$^{\circ}C$, were used for quasi-carbonization processes. The chemical composition, physical properties, thermal stability, microstructure, mechanical properties and electrical resistivity of the quasi-carbon fibers prepared with different final heat-treatment temperatures, heating rates, holding times, heating steps, and purging gas purity were extensively examined. The results were also compared with those from stabilized PAN fiber and commercial PAN-based carbon fiber. The present study showed that a variety of properties of quasi-carbon fibers significantly depended on several quasi-carbonization process parameters.

  • PDF

Effect of Process Condition on Tensile Properties of Carbon Fiber

  • Lee, Sung-Ho;Kim, Ji-Hoon;Ku, Bon-Cheol;Kim, Jun-Kyong;Chung, Yong-Sik
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • For polyacrylonitrile (PAN) based carbon fiber (CF) process, we developed a lab scale wet spinning line and a continuous tailor-made stabilization system with ten columns for controlling temperature profile. PAN precursor was spun with a different spinning rate. PAN spun fibers were stabilized with a total duration of 45 to 110 min at a given temperature profile. Furthermore, a stabilization temperature profile was varied with the last column temperature from 230 to $275^{\circ}C$. Stabilized fibers were carbonized in nitrogen atmosphere at $1200^{\circ}C$ in a furnace. Morphologies of spun and CFs were observed using optical and scanning electron microscopy, respectively. Tensile properties of resulting CFs were measured. The results revealed that process conditions such as spinning rate, stabilization time, and temperature profile affect microstructure and tensile properties of CFs significantly.

The Preparation of PAN-based Activated Carbon Fiber by KOH (KOH 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 김기원;정승훈;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Activated carbon fibers were prepared from stabilized PAN fibers by chemical activation using hydroxide. The variations in specific surface area amount of iodine adsorption micro-structure and pore size distribution in the activated carbon fibers after the activation process were discussed. In the chemical activation using potassium hydroxide specific surface area of about 2545m2/g and amount of iodine adsorption of 2049 mg/g were obtained at the condition of KOH/fiber ratio of 1 and 800$^{\circ}C$ Nitrogen adsorption isotherms for PAN based activated carbon fibers showed the type I in the Brunauer-Deming-Deming-Teller classification indicating the micro-pores consisting the activated fibers.

  • PDF

A Study on Stabilization and Mechanical Properties of Polyacrylonitrile-based Fiber with Itaconic acid (이타콘산을 함유한 폴리아크릴로니트릴계 전구체섬유의 열안정화 및 그 물성에 관한 연구)

  • 신익기;이신희;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.76-85
    • /
    • 2003
  • In this study, a continuous stabilization process is used to make high-performance carbon fiber from polyacrylonitrile(PAM)-based fibers. The effect of oxygen content of PAN-based fiber on the stabilization process and the properties of the resultant carbon fibers is investigated. In order to research the progress of stabilization reaction FT-IR, elemental analysis, density, DSC, etc are used. Stabilization is carried out in air atmosphere from the 200 to $300^\circ{C}$ temperature range. An increase of PAN-based fibers diameter reduces the oxygen content during the continuous stabilization process. A higher oxygen content increase the density, tensile strength and modulus in the resultant carbon fibers. The most appropriate oxygen content in the stabilized fiber should be about 12%. Fibers having more than 2% oxygen content yield carbon fibers with inferior properties. Those carbon fibers also have sufficient commercial availability.

Preparation of Activated Carbon Fiber-Ceramic Composites and Its Physical Properties (활성탄소섬유-세라믹복합체의 제조 및 물성)

  • 이재춘;박민진;김병균;신경숙;이덕용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.56-62
    • /
    • 1997
  • The PAN (Polyacrylonitrile) based carbon fiber-ceramic composites (CFCC) were prepared from mixtures of short carbon fibers, phenolic resin and ceramic binder. The effects of carbonization temperature of a pre-cursor fiber, the stabilized PAN fiber, on the specific surface area and the bending strength of the activated CFCC were studied in this work. The precursor fiber was carbonized at 80$0^{\circ}C$ and 100$0^{\circ}C$, respectively. The CFCC were activated at 85$0^{\circ}C$ in carbon dioxide for 10~90 minutes. As the burn-off of the activated CFCC made of the precursor fiber carbonized at 80$0^{\circ}C$ was increased from 37% to 76%, the specific surface area in-creased from 493m2/g to 1090m2/g, and the bending strength decreased from 4.5MPa to 1.4MPa. These values were about two times larger than those of the activated CFCC of which precursor fiber was car-bonized at 100$0^{\circ}C$. The effects of carbonization temperature of a precursor fiber on the specific surface area and bending strength of the activated CCFC were explained by bonding force between carbon fiber and car-bonized phenolic resin as well as by relative shirnkage between carbon fiber and ceramic film.

  • PDF

Thermal Cycling Oxidation Resistance of Carbon Fiber-Phenolic and Stabilized PAN Fiber-Phenolic Composites (탄소섬유-페놀수지 및 안정화 PAN섬유-페놀수지 복합재료의 열주기 산화저항)

  • Jo, Dong-Hwan;An, Yeong-Seok;Lee, Sang-Cheol;Yun, Gwan-Han;Min, Byeong-Gil
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.838-844
    • /
    • 1997
  • 폴리아크릴로나트릴(PAN)계 탄소섬유 및 안정화 PAN섬유를 사용하여 제조한 페놀수지 복합재료의 열주기 산화저항성에 섬유표면의 인산코팅 유.무가 미치는 영향을 조사하였다. 각 복합재료의 열주기 산화저항성은 열중량분석기의 원리를 응용하여, 공기중에서 hot zone과 cold zone을 주기적으로 반복이동하는 열충격조건에 노출되면서 초래되는 복합재료의 중량변화를 측정하여 비교하였다. 시험변수로는 hot zone에 노출된 온도, 시간 및 싸이클횟수를 선정하였다. 이 시험방법은 비교적 단순하며, 작은 크기의 시편으로도 가능하고, 중량변화가 온-라인 모니터에서 직접 감지되므로 데이타의 신뢰성이 \ulcorner다. 각 시험조건에서 인산코팅한 섬유를 사용한 복합재료가 그렇지 않은 재료보다 고온에서의 높은 산화저항성 때문에 우수한 열주기저항성을 보여 주었다. 또한 인산코팅의 존재 여부가 열주기시험 후의 탄소섬유-페놀수지 및 안정화 PAN섬유-페놀수지 복합재료의 미세구조에 미치는 영향을 조사하였다.

  • PDF

Electrochemical Behaviors of PAN/Ag-based Carbon Nanofibers by Electrospinning

  • Park, Soo-Jin;Im, Se-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.777-781
    • /
    • 2008
  • In this work, silver nanoparticles-containing polyacrylonitrile (PAN) solutions in N,N-dimethylformamide (DMF) were electrospun to be webs consisting of nanofibers. The inputted voltage and PAN content in the solution were fixed at 15 kV and 10 wt.% in DMF with 10 cm of tip-to-collector distance (TCD). The PAN/Ag nanofiber webs were stabilized by oxidation at 250 ${^{\circ}C}$ for 2 h in air and carbonized at 1000 ${^{\circ}C}$ for 2 h in $N_2$. The resultant diameter distribution and morphologies of the nanofibers were evaluated by scanning electron microscope analysis. The electrochemical behaviors of the nanofiber webs were also observed by cyclic voltammetry tests. It was found that the presence of silver nanoparticles in carbon nanofiber webs led to the increase of specific capacitance and the decrease of fiber diameters.

Tensile Properties and Morphology of Carbon Fibers Stabilized by Plasma Treatment

  • Lee, Seung-Wook;Lee, Hwa-Young;Jang, Sung-Yeon;Jo, Seong-Mu;Lee, Hun-Soo;Lee, Sung-Ho
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • Commercial PAN fibers were thermally stabilized at 220 or $240^{\circ}C$ for 30 min. Those fibers were further stabilized using radio-frequency (RF) capacitive plasma discharge during 5 or 15 min. From Fourier transform infrared spectroscopy results, it was observed that an additional plasma treatment led to further stabilization of PAN fibers. After stabilization, carbonization was performed to investigate the final tensile properties of the fabricated carbon fibers (CFs). The results revealed that a combination of thermal and plasma treatment is a possible stabilization process for manufacturing CFs. Morphology of CFs was investigated using scanning electron microscopy. The morphology shows that the plasma stabilization performed by the RF large gap plasma discharge may damage the surface of the CF, so it is necessary to select a proper process condition to minimize the damage.