DOI QR코드

DOI QR Code

Electrochemical Behaviors of PAN/Ag-based Carbon Nanofibers by Electrospinning

  • Published : 2008.04.20

Abstract

In this work, silver nanoparticles-containing polyacrylonitrile (PAN) solutions in N,N-dimethylformamide (DMF) were electrospun to be webs consisting of nanofibers. The inputted voltage and PAN content in the solution were fixed at 15 kV and 10 wt.% in DMF with 10 cm of tip-to-collector distance (TCD). The PAN/Ag nanofiber webs were stabilized by oxidation at 250 ${^{\circ}C}$ for 2 h in air and carbonized at 1000 ${^{\circ}C}$ for 2 h in $N_2$. The resultant diameter distribution and morphologies of the nanofibers were evaluated by scanning electron microscope analysis. The electrochemical behaviors of the nanofiber webs were also observed by cyclic voltammetry tests. It was found that the presence of silver nanoparticles in carbon nanofiber webs led to the increase of specific capacitance and the decrease of fiber diameters.

Keywords

References

  1. Gryglewicz, G.; Machnikowski, J.; Lorenc-Grabowska, E.; Lota, G.; Frackowiak, E. Electrochim. Acta 2005, 50, 1197 https://doi.org/10.1016/j.electacta.2004.07.045
  2. Jeun, J. P.; Lim, Y. M.; Nho, Y. C. J. Ind. Eng. Chem. 2005, 11, 573
  3. Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937 https://doi.org/10.1016/S0008-6223(00)00183-4
  4. Conway, B. E. Electrochemical Supercapacitors; Kluwer Academic and Plenum Publishers: New York, 1999
  5. Nishino, A. J. Power Sources 1996, 60, 137 https://doi.org/10.1016/S0378-7753(96)80003-6
  6. Kim, C.; Choi, Y. O.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 878
  7. Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A.; Shiraishi, S.; Kurihara, H.; Oya, A. Carbon 2003, 41, 1765 https://doi.org/10.1016/S0008-6223(03)00141-6
  8. Bunhko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C. Polymer 1999, 40, 7397 https://doi.org/10.1016/S0032-3861(98)00866-0
  9. Doshi, J.; Reneker, D. H. J. Electrost. 1995, 35, 151 https://doi.org/10.1016/0304-3886(95)00041-8
  10. Li, D.; Xia, Y. Adv. Mater. 2004, 16, 1151 https://doi.org/10.1002/adma.200400719
  11. Park, S. J.; Im, S. H.; Rhee, J. M.; Lee, Y. S. Carbon Sci. 2007, 8, 43
  12. Ge, J. J.; Hou, H.; Li, Q.; Graham, M. J.; Greiner, A.; Reneker, D. H.; Harris, F. W.; Cheng, S. Z. D. J. Am. Chem. Soc. 2004, 126, 15754 https://doi.org/10.1021/ja048648p
  13. Ryu, Z.; Zheng, J.; Wang, M.; Zhang, B. J. Colloid Interface Sci. 2000, 230, 312 https://doi.org/10.1006/jcis.2000.7078
  14. Park, S. J.; Kim, B. J. Carbon Sci. 2005, 6, 257
  15. Kim, C.; Choi, Y. O.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 883 https://doi.org/10.1016/j.electacta.2004.02.072
  16. Wang, X.; Chung, D. D. L. Smart Mater. Struct. 1997, 6, 504 https://doi.org/10.1088/0964-1726/6/4/017
  17. Zeleny, J. J. Phys. Rev. 1971, 10, 1 https://doi.org/10.1103/PhysRev.10.1
  18. Michelson, D. Electrostatic Atomization; Adam Hilger: Bristol, 1990
  19. Taylor, G. Proc. Roy. Soc. London A 1969, 313, 453 https://doi.org/10.1098/rspa.1969.0205
  20. Hendricks, C. D.; Carson, R. S.; Hogan, J. J.; Schneider, J. M. AIAA J. 1964, 2, 733 https://doi.org/10.2514/3.2391
  21. Larrondo, L.; St. John Manley, R. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 909 https://doi.org/10.1002/pol.1981.180190601
  22. Cloupeau, M.; Prunet-Foch, B. J. Electrost. 1990, 25, 165 https://doi.org/10.1016/0304-3886(90)90025-Q
  23. Rulison, A. J.; Flagan, R. C. Rev. Sci. Instr. 1993, 64, 683 https://doi.org/10.1063/1.1144197

Cited by

  1. Electrospinning: designed architectures for energy conversion and storage devices vol.4, pp.12, 2011, https://doi.org/10.1039/c1ee02201f
  2. Effect of temperature and holding time on preoxidation for aligned electrospun polyacrylonitrile nanofibers vol.130, pp.2, 2013, https://doi.org/10.1002/app.39290
  3. Microwave-Assisted Oxidation of Electrospun Turbostratic Carbon Nanofibers for Tailoring Energy Storage Capabilities vol.27, pp.13, 2015, https://doi.org/10.1021/acs.chemmater.5b00854
  4. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers vol.7, pp.27, 2015, https://doi.org/10.1021/acsami.5b03757
  5. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2016, https://doi.org/10.1002/aenm.201601301
  6. Carbon Nanofibers Functionalized with Active Screen Plasma-Deposited Metal Nanoparticles for Electrical Energy Storage Devices vol.9, pp.27, 2017, https://doi.org/10.1021/acsami.7b05567
  7. Comparative Study of the Electrospun PAN Nanofiber Reinforced with CNT and CNF: Effect on Morphology, Thermal Stability and Electro-Conductivity Properties vol.1107, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1107.295
  8. Electronic, Magnetic, and Transport Properties of Polyacrylonitrile-Based Carbon Nanofibers of Various Widths: Density-Functional Theory Calculations vol.9, pp.1, 2018, https://doi.org/10.1103/PhysRevApplied.9.014012
  9. Preparation of carbon nanofibres through electrospinning and thermal treatment vol.58, pp.12, 2009, https://doi.org/10.1002/pi.2669
  10. Electrical conductivity of silver nanoparticle doped carbon nanofibres measured by CS-AFM vol.9, pp.8, 2019, https://doi.org/10.1039/C8RA04594A
  11. Mesoporous carbon nanofiber engineered for improved supercapacitor performance vol.36, pp.2, 2019, https://doi.org/10.1007/s11814-018-0199-1
  12. Electrospun materials for energy harvesting, conversion, and storage: A review vol.82, pp.11, 2008, https://doi.org/10.1351/pac-con-09-11-49
  13. 다중벽 탄소나노튜브의 표면처리에 따른 전기이중층 커패시터의 특성 vol.54, pp.1, 2010, https://doi.org/10.5012/jkcs.2010.54.01.093
  14. Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves vol.31, pp.1, 2010, https://doi.org/10.5012/bkcs.2010.31.01.100
  15. Electrospun carbon nanofibers as a functional composite platform: a review of highly tunable microstructures and morphologies for versatile applications vol.2, pp.1, 2008, https://doi.org/10.1088/2631-6331/ab7a8c