• Title/Summary/Keyword: stability estimation

Search Result 876, Processing Time 0.03 seconds

Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models

  • Lee Choon-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.428-437
    • /
    • 2006
  • Many physical systems are hybrid in the sense that they have continuous behaviors and discrete phenomena. In control system with multiple models, switching strategy and stability of the closed-loop system under switching are very important issues. In this paper, a novel adaptive control scheme based on multiple parameter models is proposed to cope with a change in Parameters. Switching strategy guarantees the non-increase in the global control Lyapunov function if the estimation of Lyapunov function value converges. Least-square estimation is used to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock brake system are shown to verify the effectiveness of the proposed controller in view of a large change in system parameters.

Model Tests of Piping Stability Estimation in dredging ground breakwater (준설토지반 가호안의 파이핑 안정성 평가를 위한 모형실험)

  • Kim, Hong-Taek;Han, Yeon-Jin;Kim, Jong-Seok;Kim, Tae-Hyoung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.689-696
    • /
    • 2008
  • In this study, seepage characteristics of breakwater in dredging ground evaluated for the piping stability estimation by scale model tests. For this, to estimated the seepage characteristics through the model tests and numerical analyses, the engineering stability on piping of breakwater evaluated based on scale model tests and numerical analyses results.

  • PDF

Lateral Stability/Control Derivatives Estimation of Canard Type Airplane form Flight Test

  • Hwang, Myoung-Shin;Eun, Hee-Bong;Park, Wook-Je;Kim, Yeong-Cheol;Seong, Ki-Jeong;Kim, Eung-tae;Lee, Jong-won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.1-167
    • /
    • 2001
  • Although computational-fluid-dynamic methods and wind-tunnel testing can provide data about the aerodynamic characteristics of an aircraft, the determination of these and other characteristics from flight data plays and important role. The object of this study is the verification of overall aircraft system performance to improve the stability of vehicle. We have test the Velocity-173, canard-type airplane to obtain the stability data. We adopt the two identifications method, EKF and MLE, for the parameter estimation. The results are compared with those of conventional type airplane.

  • PDF

Stability Improvement of Distributed Power Generation Systems with an LCL-Filter Using Gain Scheduling Based on Grid Impedance Estimations

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.599-605
    • /
    • 2011
  • This paper proposes a gain scheduling method that improves the stability of grid-connected systems employing an LCL-filter. The method adjusts the current controller gain through an estimation of the grid impedance in order to reduce the resonance that occurs when using an LCL-filter to reduce switching harmonics. An LCL-filter typically has a frequency spectrum with a resonance peak. A change of the grid-impedance results in a change to the resonant frequency. Therefore an LCL-filter needs a damping method that is applicable when changing the grid impedance for stable system control. The proposed method instantaneously estimates the grid impedance and observes the resonant frequency at the same time. Consequently, the proposed method adjusts the current controller gain using a gain scheduling method in order to guarantee current controller stability when a change in the resonant frequency occurs. The effectiveness of the proposed method has been verified by simulations and experimental results.

Algorithm for the Constrained Chebyshev Estimation in Linear Regression

  • Kim, Bu-yong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • This article is concerned with the algorithm for the Chebyshev estimation with/without linear equality and/or inequality constraints. The algorithm employs a linear scaling transformation scheme to reduce the computational burden which is induced when the data set is quite large. The convergence of the proposed algorithm is proved. And the updating and orthogonal decomposition techniques are considered to improve the computational efficiency and numerical stability.

  • PDF

A Study on the Real-Time Parameter Estimation of DURUMI-II for Control Surface Fault Using Flight Test Data (Longitudinal Motion)

  • Park, Wook-Je;Kim, Eung-Tai;Song, Yong-Kyu;Ko, Bong-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.410-418
    • /
    • 2007
  • For the purpose of fault detection of the primary control surface, real-time estimation of the longitudinal stability and control derivatives of the DURUMI-II using the flight data is considered in this paper. The DURUM-II, a research UAV developed by KARI, is designed to have split control surfaces for the redundancy and to guarantee safety during the fault mode flight test. For fault mode analysis, the right elevator was deliberately fixed to the specified deflection condition. This study also mentions how to implement the multi-step control input efficiently, and how to switch between the normal mode and the fault mode during the flight test. As a realtime parameter estimation technique, Fourier transform regression method was used and the estimated data was compared with the results of the analytical method and the other available method. The aerodynamic derivatives estimated from the normal mode flight data and the fault mode data are compared and the possibility to detect the elevator fault by monitoring the control derivative estimated in real time by the computer onboard was discussed.

The Design of an Improved PID Controller by Using the Kalman Filter (칼만 필터를 이용한 개선된 PID 제어기 설계)

  • Cha, In-Hyeok;Gwon, Tae-Jong;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.7-15
    • /
    • 2000
  • This paper suggests an auto-tuning I'll) control algorithm that uses the advantage of PID controller and improves the system performance. The PID gains being designed by th- conventional method are tuned through the plant parameter estimation. The Extended Kalman Filter is used for the estimation. It works as an observer and noise filter. Moreover, as the plant state and the uncertain parameter could be estimated simultaneously, the proposed algorithm is very useful in the tracking control of a system with uncertain parameter. The auto-tuning I'll) controller could maintain the system performance in the case that the plant parameters are uncertain or varying. The proposed control algorithm requires a correct estimation of the plant parameter. The controller stability and the performance is considered through the stability criteria and a servo motor model. The Kalman filter estimates the most sensitive plant parameter, which is determined by the sensitivity analysis.

The Stability Conditions, Performance and Design Methodology for the Positive Position Feedback Controller (양변위 되먹임 제어기의 안정성, 제어 성능 및 설계 방법)

  • Kwak, Moon-Kyu;Han, Sang-Bo;Heo, Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.208-213
    • /
    • 2004
  • This paper is concerned with the theoretical estimation of the single-input single-output(SISO) positive position feedback(PPF) controller and the derivation of the stability conditions for the multi-input multi-output (MIMO) PPF controller. Although the stability condition for the SISO PPF controller was derived in the earlier works, the question regarding the performance estimation of the SISO PPF controller has never been studied theoretically. Hence, the SISO PPF controller for the single degree-of-freedom system was first investigated and then control parameters including gain, the filter frequency, and the damping factor of the PPF controller were analyzed in detail thus providing the design methodology for the SISO PPF controller. In the case of real structure. there are infinite number of natural modes so that some modes are to be controlled by a limited number of actuator and sensor. Based on the theoretical results on the SISO PPF controller, the stability condition for the multi-input multi-output PPF controller was derived when only the few number of modes are to be controlled. The control spillover problem is also discussed in detail.

Lateral Stability Control of Electric Vehicle Based On Disturbance Accommodating Kalman Filter using the Integration of Single Antenna GPS Receiver and Yaw Rate Sensor

  • Nguyen, Binh-Minh;Wang, Yafei;Fujimoto, Hiroshi;Hori, Yoichi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.899-910
    • /
    • 2013
  • This paper presents a novel lateral stability control system for electric vehicle based on sideslip angle estimation through Kalman filter using the integration of a single antenna GPS receiver and yaw rate sensor. Using multi-rate measurements including yaw rate and course angle, time-varying parameters disappear from the measurement equation of the proposed Kalman filter. Accurate sideslip angle estimation is achieved by treating the combination of model uncertainties and external disturbances as extended states. Active front steering and direct yaw moment are integrated to manipulate sideslip angle and yaw rate of the vehicle. Instead of decoupling control design method, a new control scheme, "two-input two-output controller", is proposed. The extended states are utilized for disturbance rejection that improves the robustness of lateral stability control system. The effectiveness of the proposed methods is verified by computer simulations and experiments.