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A Study on the Real-Time Parameter Estimation of DURUMI-II for
Control Surface Fault Using Flight Test Data (Longitudinal Motion)

Wook-Je Park, Eung-Tai Kim, Yong-Kyu Song, and Bong-Jin Ko

Abstract: For the purpose of fault detection of the primary control surface, real-time estimation
of the longitudinal stability and control derivatives of the DURUMI-II using the flight data is
considered in this paper. The DURUM-II, a research UAV developed by KARI, is designed to
have split control surfaces for the redundancy and to guarantee safety during the fault mode flight
test. For fault mode analysis, the right elevator was deliberately fixed to the specified deflection
condition. This study also mentions how to implement the multi-step control input efficiently,
and how to switch between the normal mode and the fault mode during the flight test. As a real-
time parameter estimation technique, Fourier transform regression method was used and the
estimated data was compared with the results of the analytical method and the other available
method. The aerodynamic derivatives estimated from the normal mode flight data and the fault
mode data are compared and the possibility to detect the elevator fault by monitoring the control
derivative estimated in real time by the computer onboard was discussed.

Keywords: Fault detection, flight test, longitudinal stability, real-time parameter estimation,

uninhabited aerial vehicle (UAV).

1. INTRODUCTION

Typically, the maximum likelihood estimation [1]
(MLE) is the most widely used algorithm for
parameter estimation from flight test data [2-5]. It has
been successfully used for both linear and nonlinear
models. The parameters are estimated by maximizing
the probability of correspondence between estimation
and measurement data. The iterative algorithm of the
maximum likelihood estimation is slower than
algorithm of the extended Kalman filter (EKF) or the
Fourier transform regression (FTR).

The basic approach of the extended Kalman filter
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[6-9] is the state estimation, which is the same in
direct parameter estimation. The parameters are also
considered as states in a filtering problem. It is no
increment in difficulty associated with the parameter
estimation of nonlinear systems, compared to that of
linear systems. The extended Kalman filter is a one-
pass algorithm, which usually means that it is faster
than the algorithm of MLE and that it is applicable to
the unstable and on-line systems. The extended
Kalman filter requires the specification of initial
values and error covariance for the estimate and the
knowledge of measurement and process noise
statistics.

In this paper, the Fourier transform regression [10-
15] is proposed for the parameter estimation algorithm.
It consists of suitably excited input and actually
measured system responses; therefore, it is possible to
be repeatedly implemented in UAV tests aboard in
real time.

The algorithm of the EKF consists of arithmetical
computations and twice matrices inversion, while the
FTR algorithm involves arithmetical computations
and three times matrices inversion. The FTR is
simpler than the EKF equations. The FTR algorithm is
slower than the EKF algorithm, because the
arithmetical computational matrices inversions of
FTR required computations of complex numbers.
Both the FTR and EKF are applicable to on-line
parameter estimation; however the EKF has the
problem for sensitivity on initial values.

The FTR algorithm is preferably applied because of
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its rapid convergence and robustness to measurement
and system noise while the EKF has the problem of
sensitivity on initial values. Recently, the FTR is
applied to the parameter estimation of an aircraft that
experiences failure or is in damage state as well as in
normal state. Typically, frequency range in rigid body
dynamics such as the DURUMI-II can be selected for
filtering out higher frequency noise and structural
interference [11,12].

in the event of the control surface malfunction in
flight, if the status of the damage is known, the fault
tolerant control system is capable of adapting to the
various faults in real time. Assuming the
controllability and the trimmability of the aircraft at
post-failure conditions, in the event of the control
surface becoming jammed, the aircraft can keep on
flying by the flight control computer, which has
restructured and reconfigured controllers according to
the grade of system failure. Without adding a sensor
or additional cost, the advantage is an increase in
reliability as the flight control system is reconfigured
using on-line estimates of aircraft parameters from a
real-time parameter estimation scheme. The aim of the
research is to find the status of the failure by using the
parameter estimation method in the case of a jammed
control surface.

2. UNINHABITED AERIAL VEHICLE

To enhance the flight safety during failure mode
test, the DURUMI-II, a research UAV developed by
KARLI, is designed to have redundancy in the control
surface. The DURUMI-II is a 150% enlarged version
of the DURUMI [16-19]. The specifications of the
DURUMI-II are presented in Table 1. Figs. 2 - 4 show
the changed configuration of the DURUMI-IL. If any
malfunction of the control surface should occur, this
system will help the DURUMI-I to fly safely. The
selection of flight mode between normal and failure
state is remotely performed by handling the switch
during the flights.

Fig. 1. DURUMI-II three views.

Table 1. DURUMI-II specifications.

Length 2.7m
Span 4.8m
Height 1.22m
Aspect Ratio 15
Powerplant ZDZ80RV
Power 7.%hp
Maximum Take-off Weight 37kg
Gross Weight 22kg
Payload 12kg
Stall Speed 60km/h
Cruise Speed 125km/h
Maximum Speed 150km/h

Fig. 2. Split in elevator.

Fig. 3. Split in ailerons.

Fig. 4. Rudder added.
3. FLIGHT TEST

The DURUMI-II has been tested to obtain aerody-



Fig. 5. DURUMI-II in take-off.

namic coefficients and control derivatives. Parameter
estimation techniques depend on the control inputs
exciting the dynamics of an airplane. A longitudinal
mode can be excited by a simple pulse, doublet, multi-
step input on the elevator. The commonly used flight
test [2-5] techniques to obtain longitudinal stability
data are relatively simple and straightforward. Lift
coefficient and pitching moment coefficient can be
estimated from a series of steady-state flight tests
conducted under various center of gravity (C.G)
conditions. The considerable efforts such as test pilot
training and auto pilot programming are required to
obtain statistically reliable flight data. To reduce the
cost and time, the program mixing and switching
method of the remote control transmitter is used to
apply the exact control input. Fig. 5 shows the
DURUMI-II in take-off phase.

3.1. Control input design and application

It is important to perform the flight test in order to
find out the suitable control input, because the control
input is exciting the dynamics of the aircraft. The
input forms have the doublet, multi-step 2-1-1 and
multi-step 3-2-1-1 input [2,5,11,20]. Fig. 6 indicates
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Fig. 6. Multi-step input.

the doublet, multi-step 2-1-1 and multi-step 3-2-1-1
input. However, many of these input forms have not
been applied in the flight test for a number of reasons.
As a result of first flight, the doublet input cannot
produce the best response of the DURUMI-II. The
time step is reduced from 1 sec to 0.7 sec. The multi-
step 3-2-1-1 input is applied. Through the analysis of
the flight test data of the DURUMI-II, the multi-step
3-2-1-1 input was proven to produce the best response
of the DURUMI-II with a good amount of information
concerning the aircraft dynamics for the estimation of
stability and control derivatives.

The control input with designed amplitude
excursion has been programmed in the R/C transmit
device [21]. When the ground test pilot maintains a
steady level flight, the flight test engineer applies the
multi-step control input such as 3-2-1-1 by operating
the switch. During the flight, it is very difficult for the
ground test pilot to apply the control input that is
close enough to the 3-2-1-1 or 2-1-1 input. Even
repeated training for a long time would greatly help
the pilot apply the control input with the required
level of accuracy.

3.2. Flight test of normal mode and fault mode
The right-side elevator was fixed deliberately, and
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Fig. 7. Fault mode control input using switching method in flight.
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Table 2. Flight test condition.

Flight condition Fault condition Control input
Normal mode |Elevator normal operation 3-2-1-1
Fault mode I  |Right elevator fixed: Odeg 3-2-1-1
Fault mode II | Right elevator fixed: -7.5deg 3-2-1-1
Fault mode IIT |Right elevator fixed: -15deg 3-2-1-1
Fault mode IV |Right elevator fixed: +7.5deg| 3-2-1-1
Fault mode V | Right elevator fixed: +15deg 3-2-1-1

aerodynamic coefficients and control derivatives were
computed in real time by the computer onboard the
DURUMI-II using the real-time parameter estimation
method of Fourier transform regression. After
realizing the scenario of right elevator fault by
operating the knob and the switch, the ground test
pilot maintains a steady level flight. The flight test
engineer also applies the multi-step control input by
operating the switch. Finally, after the flight
maneuvering is completed, the flight test engineer
restores the knob and the switch to a normal state
position. Table 2 presents the five cases of flight test
conditions including the fault state with a fixed right
elevator. Fig. 7 shows the flight test procedure for the
switch operation of normal mode and fault mode
during a flight.

4. MODELING FORMULATION

Airplane dynamics can be described by the
following linear modeling equations:

x(¢) = Ax(t) + Bu(t), )
y(t) = Cx(t) + Du(r). )

The dynamic system [10-12], whose parameters are
to be estimated, has stability and control derivatives.
The parameters to be estimated are assumed to be
constant during the flight test maneuver.

The finite Fourier transform of a signal x(¢) is

defined by
#() = LT ()7 dr. 3)

Applying the Fourier transform to (1) and (2) gives

joi(w) = Ax(w) + Bi(w), Q)]
Y(w) = Cx(w) + Dii(w). %)

When the states x, inputs u, and outputs y are
measured, individual state or output equations from
vector (4) or (5) can be used in an equation error
formulation to estimate the stability and control
derivatives contained in matrices 4, B, C, and D.

For the k-th state equation of vector (4), the cost

function is

Ji = %Z|ja)nik (n) — A, x(n) - Bkﬁ(")’z' (6)

n=1

Similar cost expressions can be written for (2)

Y =XO+g, (7
where
JanX (1)
- ja’zf‘k (2) ’ )
J @Oy (m)
£ am

o i@

S
1l

©)
L(my at (m)

and & represents the equation error in the frequency
domain. The least squares cost function is

J=%(Y—X®)*(Y—X®), (10)
C:)=[Re(X*X)J_1 Re(X'Y) (11

The estimated parameter covariance matrix is

cov(8)-£| (6-0)(6-0)" |

1 (12)
=o?|Re(X"x)] ",
where the equation error variance can be estimated
from the residuals,
*

2 1 A

o =W[(Y—XG)) (Y—X(:))}, (13)

where p is the number of elements in parameter

vector ©.
For a given frequency , the discrete Fourier
transform at sampling time i -th is defined by

X (@)= Xi_y (0)+ xe 7™, (14)

The quantity e /%A is constant for a given
frequency and constant sampling interval.

Rigid body dynamics of the DURUMI-II lie in the
rather narrow frequency band of 0.01-1.5Hz.
Consequently, it is possible to select closely spaced
fixed frequencies for the Fourier transform and the
subsequent data analysis. In this work, 0.02Hz
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frequency spacing is adjustable, which gives 50 X, X, 0 —gcos 907
frequencies evenly distributed on the interval 0.02- 7 7
1.0Hz in each transformed time domain signal. u —a 1 0
For longitudinal and lateral-directional combining 4 = Uy L]
aircraft dynamics, the state vector x, input vector ! M Y, C 7 Mo M 0
u, and output vector y in (1) and (2) are defined by w’t ug u at 1o a gt Mg
T i 0 0 1 0 |
x=lauqO0Bpro|, (15) (19)
u=_5,. (16) 4 Y, Y, gcosb |
R R [xz * * lxz * IXZ *
System matrices containing the model parameters L,+—==N, L,+*N, L. +—=N\, 0
are: Ay = Ixx Im xx
2 Io o« a1 R
[ 4 0 N, +22[ N, +22[ N +22] 0
] P I P ls r
A — (17) zZZ zz zZ
’ 0 1 0 0
0 Az - -
- _ (20)
Xs,
7 5. RESULTS OF PARAMETER ESTIMATION
Se AND FAULT ISOLATION
Uy
Figs. 9-12 show the comparison between the flight
M, +—%Zs test data and the linear simulation results of FTR
B= “o , (18) under the normal mode and the fault mode. Fig. 9
0 shows one of normal mode, Figs. 10-12 reveal the
0 fault modes. Figs. 13-16 display the scatter diagrams
I of the estimated aerodynamic coefficients for several
Be flight cases.
Ns, Table 3 shows the stability and control derivatives
0 estimated from the flight test data for the normal and
L - the fault mode by using the FTR method and the
Table 3. The comparisons of estimated stability/control derivatives for longitudinal motion.
Normal Mode Normal Fault Mode
DATCOM AAA FITLAB Mode
Method Method [16] Method (Mean) -15deg -7.5deg Odeg +7.5deg +15deg
TAS 121.2ft/s 117.6ft/s 116.91t/s 126.6ft/s 117.91/s
H 233.11t 418.11t 621.0ft 266.3ft 207.3ft
CDO 0.0292 0.0377 0.1196 0.0988 0.1571 0.0475 0.1849 0.1929 0.1640
CDa 0.1725 0.1688 0.5254 1.3515 0.6604 1.4896 0.1140 -0.1453
Clo 0.4139 0.6245 0.3562 0.4494 0.3725 0.3651 0.2957 0.3012 0.4406
CLa 5.2431 5.5138 4.1544 5.0869 2.8664 3.7200 0.9285 2.1335 3.1999
Cmd -3.1311 -4.0938 35.1935 -23.8608 -8.1892 -18.0386 -15.3072 -3.8473 -9.3210
Cma -1.8677 -1.6219 -0.5873 -0.6997 -0.4688 -0.5179 -0.4694 -0.3801 -0.4333
Cmq -22.5287 -63.6936 -30.2004 | -23.6057 -24.2736 -29.6648 -19.3658 -17.4347
CD5€ 0.0105 0.0058 -0.1632 -0.2159 -0.2212 -0.5820 0.1442 -0.0894
CLse 0.2649 -0.0630 -0.2540 -0.2331 -0.1459 -0.4503 -0.3840 -0.1623
C’”ﬁe -1.1879 0.8003 -0.3822 -0.2193 -0.1709 -0.2089 -0.1855 -0.1458
Cl&e 0.0015 0.0064 0.0022 0.0024 0.0040 -0.0004
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Fig. 8. Fault detection and isolation procedure include
autopilot system.

Table 4. Straight level flight trim value of normal and

fault mode.

Flight Condition| Elevator Aileron Rudder
Normal mode | 0.9861deg | -0.3999deg | 0.1736deg
Fault mode 1 1.4815deg | -0.4068deg | 0.0432deg
Fault mode IT | -4.5282deg | -0.3853deg | 0.3907deg
Fault mode 111 | -8.4626deg | -0.3226deg | 0.8320deg
Fault mode IV | 4.4312deg | -0.3595deg | 0.2875deg
Fault mode V | 7.4793deg | -0.3445deg | 0.3311deg

FITLAB, which implements maximum likelihood
parameter estimation of the general nonlinear system.
Matlab toolbox FITLAB requires Matlab 5.3,
Simulink 3.0, and Control System Toolbox 4.2. The
aerodynamic  coefficients computed from the
analytical methods of the Advanced Aircraft Analysis
[19] (AAA) and DATCOM are also included in these
tables for the comparison.

The coefficient slop C;_ estimated by the FTR is

similar to the AAA and DATCOM. The segregated
pattern of C; in Fig. 13 tells that the normal and
fault states can be identified from the normal mode
and the fault mode. The change in pitching moment
coefficient with respect to a, Cmd estimated by the

FTR disagrees with the result of the AAA and
DATCOM. Also, the C,~ in Fig. 14 shows that the

normal and fault state slightly differs from the normal
mode and the fault mode. The longitudinal static

5 10 R Elevator Left (Measurement)
e 5 | } Elevator Right(Measurement)]
% ok i RO R
58 B
3E 5 I L

2 0 Elevator Control Signal

3 180 W\" ( Flight Test Data
0 e bt ”'N}WWWM FTR Simulation
E3 M,r g ‘ ot ity i )
£ 8 120 Ptiranagiif A A )
LI A v Hﬁﬂé"ﬁ’h}nﬂ{«ﬂ*
= 10
8 5
i3 o s PN At *"f\\/" A b
H £ . ?\”W%/N/\p M ™ Flight Test Data
2 FTR Simulation
< -10

50
£2g 2 A, /V\
23 ofrom I N\ML/\,/WW A A s ]
58 \ran) \p/ Flight Test Data

FTR Simulation

15 ——e -

Pitch Angle
(deg)

- . Flight Test Data

0
15 FTR Simulation
-30
5
° M Flight Test Data
El e FTR Smulaton 1
25 hrhee ey AN /“n.’/ﬂWw~wrw‘m\/~\/ e et
£° s
5 20
3 .
50
< Flight Test Data
FTR Simutation
Lo /N /\/" e VIS gy AN
W
25
-50
50
Flight Test Data
gg = FTR Simulation
E;E» ofr ~ s ”\/\/,\;me,n TN N T e
o .
2T 25
-50
o 2 4 6 8 10 12 14

Time (sec)

Fig. 9. Time histories from estimated stability/
control derivatives (normal mode).

Elevator Left (Measurement)
Elevator Right(Measurement) |

Ok B T PR L A U R T R
-10 : Elevator Control Signai
15

Elevator fnput
(deg)

160 Flight Test Data
FTR Smulation

g

True Arrspeed

m"“wkw dﬁWMMWf,Mwsmwmwwwm
p Flight Test Data
FTR Simulation

Angle of Attack
(deg)

m ‘*\ "m‘ iy gty Al el s et sttt

)
i Ul R

Pitch Rate
(deglsec)

(i
Flight Test Data
FTR Simulation

20 . -

Pitch Angle
(deg)

0 SN Fiight Test Data 1
-10 FTR Simulation -
20
10

5 Flight Test Data

0 FTR Simulation

8 D S N o st o

Sideslip Angle

Flight Test Data

27 28 FTR Simulation
2 :g; [ Mj\,/ PN At g A Y, \:W\/KN‘WW AT\ AN, oy
23 25
50
50
% ’g 25
Y S N N T Y N R e e T e W
£8 25 Flight Test Data
s FTR Simulation

0 2 4 B 8 10 12 14 16 18 20 22
Time {sec)

Fig. 10. Time histories from estimated stability/
control derivatives (fault mode I: Odeg).

is smaller than the AAA and
DATCOM in the normal mode. The Cy, inFig 15
indicates that the normal and fault state slightly differs

stability parameter Cma
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normal mode. It clearly classifies the difference
between the normal mode and the fault mode. Without
the relation between the right elevator fault angle of -
15deg, -7.5deg, Odeg, +7.5deg, and +15deg, the
malfunction of the elevator reduces the elevator effect
to half. The C,, 5 reduces the malfunction of the

elevator by half, as shown in Fig. 16. Though Figs.
13-15 reveal that the normal and fault states differ, it
is not satisfactory to determine the normal and fault
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state. with a pattern of C; , C

g, and Cma,
because it is difficult to estimate the variation of
coefficients for the normal and fault states.

The straight level flight trim value of the
DURUMI-II is presented in Table 4. The fault
detection and isolation procedure is shown in Fig. 8.
In Mode I to Mode V, the Fight Control Computer
(FCC) recognizes that the elevator trim is changed and

the C is only reduced by half. It is shown to be
Me

possible to detect the elevator fault by monitoring the
elevator trim value and the control derivative value.

6. CONCLUSIONS

Using the remote control transmitter programming
and switching method is a good way of reducing the
cost, the time, and the effort for flight testing. The
aerodynamic derivatives for the DURUMI-II were
estimated from the flight test data by using the FTR
for the normal mode and the fault mode with the fixed
right elevator, and were compared with the results
from the analytical prediction method. On the whole,
The FTR results of the C;  from the flight test data

in normal mode agree well with the analytical results
from AAA, excluding the Cmoz and Cma'

It is shown to be possible to detect the elevator fault
by monitoring the value of the elevator trim and the

value of control derivative C, . estimated in real

time by the computer onboard the UAV during the
flight.

For further study, additional flight tests will be
performed to investigate the parameter variations for
various failure conditions, and the fault case of lateral
control surfaces such as rudder and aileron will also
be tested and analyzed.

REFERENCES
[11 L. Ljung, System Identification: Theory for the
User, Prentice Hall, Englewood Cliffs, NJ, 1987.

(2]

[4]

5]

6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

417

W.-J. Park, Parameter FEstimation of Aero-
dynamic Stability Derivatives using FExtended
Kalman Filter (Longitudinal Motion), Master of
Science, Hankuk Aviation University, December
1997.

M.-S. Hwang, H.-B. Eun, W.-J. Park, Y.-C. Kim,
K.-J. Seong, E.-T. Kim, and J.-W. Lee “Lateral
stability/control derivatives estimation of canard
type airplane from flight test,” Proc. of
International Conference on Control, Automa-
tion and Systems, 2001.

M.-S. Hwang, W.-J. Park, Y.-C. Kim, H.-B. Eun,
W.-J. Choi, and Y.-K. Song “Lateral stability
improvement of a canard airplane using a
vertical panel,” Proc. of AIAA Atmospheric
Flight Mechanics Conference and Exhibit,
ATAA-2002-4625, Monterey, California, August
2002.

W.-J. Park, A Study on the Design of Real-Time
Parameter Estimator for an Aircraft, Ph.D.
Thesis, Hankuk Aviation University, December
2004.

A. Gelb, Applied Optimal Estimation, The M.L.T.
Press, 1974.

J. M. Mendel, Lessons in Digital Estimation
Theory, Prentice-Hall, 1987.

J. B. Garcia-Velo, Parameter Estimation of an
Unstable Aircraft Using an Extended Kalman
Filter, M.S. Thesis, University of Cincinnati,
1991.

J. B. Garcia-Velo and B. K. Walker,
“Aerodynamic parameter estimation for high
performance aircraft using extended kalman
filter,” J. Guidance, Control and Dynamics, vol.
20, no. 6, pp. 1257-1260, Sept.-Oct. 1997.

E. A. Morelli, “High accuracy evaluation of the
finite fourier transform using sampled data,”
NASA-TM-110340, National Aeronautics and
Space Administration, 1997.

E. A. Morelli, “In-flight system identification,”
Proc. of the AIAA Atmospheric Flight Mechanics
Conference, AIAA-98-4261, Boston, MA, August
1998.

E. A. Morelli, “Real-time parameter estimation
in the frequency domain,” Proc. of the AIAA
Atmospheric  Flight Mechanics Conference,
AIAA-99-4043, Portland, OR, August 1999.

E. A. Morelli, “Identification of low order
equivalent system models from flight test data,”
NASA-TM-210117, National Aeronautics and
Space Administration, 2000.

Y. Song, “A study on real-time aircraft parameter
estimation,” Proc. of the KSAS Spring Annual
Meeting, pp. 359-362, 2001.

M. R. Napolitano, Y. Song, and B. Seanor, “On-
line parameter estimation for restructurable
flight control systems,” Aircraft Design, vol. 4,



418 Wook-Je Park, Eung-Tai Kim, Yong-Kyu Song, and Bong-Jin Ko

no. 1, pp. 19-50, March 2001.

[16] S.-O. Koo, C.-H Im, K.-W. Nam, and H.-C. Lee
“A study on comparison of dynamic stability and
flight test for small-long endurance UAV,”
KARI-UA-TM-2000-010, Korea Aerospace
Research Institute, June 2000.

[17] Y.-D. Kim, “A study on fault detection and
redundancy management system,” SUDP-P1-G4,
Ministry of Commerce, Industry and Energy of
Korea, March 2005.

[18] D. P. Raymer, Aircraft Design: A Conceptual
Approach, AIAA Education Series, 1989.

[19] Advanced Aircrafi Analysis User's Manual
Version 2.2, DARcorporation, 1999.

[20] Introduction to Performance and Flying
Qualities Flight Testing, National Test Pilot
School, 2000.

[21] W.-I. Park, E.-T. Kim, K.-J. Seong, and Y.-C.
Kim, “A study on the parameter estimation of
DURUMI-II for the fixed right elevator using
flight test data,” Journal of Mechanical Science
and Technology, vol. 20, no. 8, pp. 1234-1241,
2006.

Wook-Je Park received the B.S. and
Ph.D. degrees, both in Aeronautical
Engineering, from Korea Aerospace
University in 1994 and 2005, respec-
tively. He is now a BK Research
=y Professor at the School of Mecha-
""““f. tronics, Changwon National University.

His research interests are in fault
detection and isolation, real-time
parameter estimation method, flight testing, and their
application in aircraft and UAV.

P ™

Eung-Tai Kim received the B.S.
degree in Aeronautical Engineering
from Seoul National University in
1981, the M.S. degree in Aeronautical
Engineering from KAIST in 1983 and
the Ph.D. degree in Aeronautical
Engineering from Purdue University,
West Lafayette in 1991. He is now a
Principal Research Engineer at KARI.
His research interests are in controller design, modeling and
simulation, parameter estimation, flight testing, and their
application in aircraft.

Yong-Kyu Song received the B.S. and
M.S. degrees in Aeronautical Engineer-
ing from Seoul National University in
1985, and the Ph.D. degree in
Aerospace  Engineering from the
University of Michigan, in 1992. He is
now a Professor at the School of
Aeronautical & Mechanical Engineer-
ing, Korea Aerospace University. His
research interests are in control of aerospace vehicles,
missile autopilot design, space trajectory analysis, control
and analysis of nonlinear systems, and flight test data
analysis.

Bong-Jin Ko received the B.S. degree
in Telecommunication Engineering
from Korea Aerospace University in
1986 and the M.S. and Ph.D. degrees
in Electronic Engineering from Korea
Aerospace University in 1988 and
1995, respectively. From 1994 to 1996,
he was an Assistant Professor at Inha
Technical College. He is currently a
Professor in the School of Mechatronics, Changwon
National University. His research interests are HAPS and
satellite communication systems.



