• Title/Summary/Keyword: squared residual

Search Result 52, Processing Time 0.025 seconds

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit for Multiple Measurement Vectors (병렬OMP 기법을 통한 복수 측정 벡터기반 성긴 신호의 복원)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2252-2258
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the simultaneous orthogonal matching pursuit (S-OMP) which has been widely used as a greedy algorithm for sparse signal recovery for multiple measurement vector (MMV) problem. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the first iteration, (2) the conventional S-OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP for MMV outperforms than the conventional S-OMP both in terms of exact recovery ratio (ERR) and mean-squared error (MSE).

Development of a Triage Competency Scale for Emergency Nurses (응급실 간호사의 중증도 분류 역량 측정도구 개발)

  • Moon, Sun Hee;Park, Yeon Hwan
    • Journal of Korean Academy of Nursing
    • /
    • v.48 no.3
    • /
    • pp.362-374
    • /
    • 2018
  • Purpose: This study aimed to develop a triage competency scale (TCS) for emergency nurses, and to evaluate its validity and reliability. Methods: Preliminary items were derived based on the attributes and indicators elicited from a concept analysis study on triage competency. Ten experts assessed whether the preliminary items belonged to the construct factor and determined the appropriateness of each item. A revised questionnaire was administered to 250 nurses in 18 emergency departments to evaluate the reliability and validity of the scale. Data analysis comprised item analysis, confirmatory factor analysis, contrasted group validity, and criterion-related validity, including criterion-related validity of the problem solving method using video scenarios. Results: The item analysis and confirmatory factor analysis yielded 5 factors with 30 items; the fit index of the derived model was good (${\chi}^2/df=2.46$, Root Mean squared Residual=.04, Root Mean Squared Error of Approximation=.08). Additionally, contrasted group validity was assessed. Participants were classified as novice, advanced beginner, competent, and proficient, and significant differences were observed in the mean score for each group (F=6.02, p=.001). With reference to criterion-related validity, there was a positive correlation between scores on the TCS and the Clinical Decision Making in Nursing Scale (r=.48, p<.001). Further, the total score on the problem solving method using video scenarios was positively correlated with the TCS score (r=.13, p=.04). The Cronbach's ${\alpha}$ of the final model was .91. Conclusion: Our TCS is useful for the objective assessment of triage competency among emergency nurses and the evaluation of triage education programs.

Nonparametric estimation of the discontinuous variance function using adjusted residuals (잔차 수정을 이용한 불연속 분산함수의 비모수적 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • In usual, the discontinuous variance function was estimated nonparametrically using a kernel type estimator with data sets split by an estimated location of the change point. Kang et al. (2000) proposed the Gasser-$M{\ddot{u}}ller$ type kernel estimator of the discontinuous regression function using the adjusted observations of response variable by the estimated jump size of the change point in $M{\ddot{u}}ller$ (1992). The adjusted observations might be a random sample coming from a continuous regression function. In this paper, we estimate the variance function using the Nadaraya-Watson kernel type estimator using the adjusted squared residuals by the estimated location of the change point in the discontinuous variance function like Kang et al. (2000) did. The rate of convergence of integrated squared error of the proposed variance estimator is derived and numerical work demonstrates the improved performance of the method over the exist one with simulated examples.

Health-related quality of life in female patients with reumatoid arthritis: a structural equation model (여성 류마티스 관절염 환자의 건강관련 삶의 질 구조모형)

  • Bukyung Kim;Mi-Hae Sung
    • Women's Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.91-103
    • /
    • 2023
  • Purpose: This study aimed to construct a structural equation model to explain and predict factors affecting the health-related quality of life (QoL) in female rheumatoid arthritis (RA) patients based on the health-related QoL model by Ferrans et al. (2005) and a literature review. Methods: Patients (N=243) who were either registered members of an internet cafe composed of patients with RA or rheumatology outpatients at two tertiary general hospitals in Busan, Korea, were recruited via convenience sampling. Data were collected from July 2 to September 9, 2021, and the survey was conducted using a web-based questionnaire. The data were analyzed by SPSS and AMOS 26.0. Results: The goodness-of-fit statistics of the final model exhibited good results (χ2/degree of freedom=2.68, Turker-Lewis index=.94, comparative fit index=.96, standardized root mean-squared residual=.04, root mean- square error of approximation=.08), and 11 out of 14 paths of the model were supported. The squared multiple correlation, which reflected the explanatory power of the environmental characteristics, symptoms, functional status, and perceived health status on health-related QoL, was 80%. In the hypothesis model, 10 paths had significant direct effects, 6 paths had significant indirect effects, and 12 paths had significant total (direct and indirect) effects. Conclusion: Considering that factors directly affecting the health-related QoL of female patients with RA were social support, symptoms (fatigue and depression), resilience, and perceived health status, and that resilience was the most influential factor, clinicians can encourage resilience. Hence, to improve the health-related QoL of female patients with RA, continuing management is necessary, using various intervention methods that focus on enhancing resilience from the early stage to the end of treatment for RA.

A study on combination of loss functions for effective mask-based speech enhancement in noisy environments (잡음 환경에 효과적인 마스크 기반 음성 향상을 위한 손실함수 조합에 관한 연구)

  • Jung, Jaehee;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.234-240
    • /
    • 2021
  • In this paper, the mask-based speech enhancement is improved for effective speech recognition in noise environments. In the mask-based speech enhancement, enhanced spectrum is obtained by multiplying the noisy speech spectrum by the mask. The VoiceFilter (VF) model is used as the mask estimation, and the Spectrogram Inpainting (SI) technique is used to remove residual noise of enhanced spectrum. In this paper, we propose a combined loss to further improve speech enhancement. In order to effectively remove the residual noise in the speech, the positive part of the Triplet loss is used with the component loss. For the experiment TIMIT database is re-constructed using NOISEX92 noise and background music samples with various Signal to Noise Ratio (SNR) conditions. Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligibility (STOI) are used as the metrics of performance evaluation. When the VF was trained with the mean squared error and the SI model was trained with the combined loss, SDR, PESQ, and STOI were improved by 0.5, 0.06, and 0.002 respectively compared to the system trained only with the mean squared error.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Near-Optimum Blind Decision Feedback Equalization for ATSC Digital Television Receivers

  • Kim, Hyoung-Nam;Park, Sung-Ik;Kim, Seung-Won;Kim, Jae-Moung
    • ETRI Journal
    • /
    • v.26 no.2
    • /
    • pp.101-111
    • /
    • 2004
  • This paper presents a near-optimum blind decision feedback equalizer (DFE) for the receivers of Advanced Television Systems Committee (ATSC) digital television. By adopting a modified trellis decoder (MTD) with a trace- back depth of 1 for the decision device in the DFE, we obtain a hardware-efficient, blind DFE approaching the performance of an optimum DFE which has no error propagation. In the MTD, the absolute distance is used rather than the squared Euclidean distance for the computation of the branch metrics. This results in a reduction of the computational complexity over the original trellis decoding scheme. Compared to the conventional slicer, the MTD shows an outstanding performance improvement in decision error probability and is comparable to the original trellis decoder using the Euclidean distance. Reducing error propagation by use of the MTD in the DFE leads to the improvement of convergence performance in terms of convergence speed and residual error. Simulation results show that the proposed blind DFE performs much better than the blind DFE with the slicer, and the difference is prominent at the trellis decoder following the blind DFE.

  • PDF

Study on DC-Offset Cancellation in a Direct Conversion Receiver

  • Park, Hong-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.157.2-157.2
    • /
    • 2012
  • Direct-conversion receivers often suffer from a DC-offset that is a by-product of the direct conversion process to baseband. In general, a basic approach to reduce the DC-offset is to do simple average of the baseband signal and remove the DC by subtracting the average. However, this gives rise to a residual DC offset which degrades the performance when the receiver adopts the coding schemes with high coding rates such as 8-PSK. Therefore, more advanced methods should be additionally required for better performance. While the training sequences are basically designed to have good auto-correlation properties to facilitate the channel estimation, they may be not good for the simultaneous estimation of the channel response and the DC-offset. Also the DC offset compensation under a bad condition does not give good results due to the estimation error. Correspondingly, the proposed scheme employs the two important points. First, the training sequence codes are divided into two groups by MSE(Mean Squared Errors) for estimating the channel taps and then SNR calculated from each group is compared to predefined threshold to do fine DC-offset estimation. Next, ON/OFF module is applied for preventing performance degradation by large estimation error under severe channel conditions. The simulation results of the proposed scheme shows good performances compared to the existing algorithm. As a result, this scheme is surely applicable to the receiver design in many communications systems.

  • PDF

A Vtub-Shaped Hazard Rate Function with Applications to System Safety

  • Pham, Hoang
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • In reliability engineering, the bathtub-shaped hazard rates play an important role in survival analysis and many other applications as well. For the bathtub-shaped, initially the hazard rate decreases from a relatively high value due to manufacturing defects or infant mortality to a relatively stable middle useful life value and then slowly increases with the onset of old age or wear out. In this paper, we present a new two-parameter lifetime distribution function, called the Loglog distribution, with Vtub-shaped hazard rate function. We illustrate the usefulness of the new Vtub-shaped hazard rate function by evaluating the reliability of several helicopter parts based on the data obtained in the maintenance malfunction information reporting system database collected from October 1995 to September 1999. We develop the S-Plus add-in software tool, called Reliability and Safety Assessment (RSA), to calculate reliability measures include mean time to failure, mean residual function, and confidence Intervals of the two helicopter critical parts. We use the mean squared error to compare relative goodness of fit test of the distribution models include normal, lognormal, and Weibull within the two data sets. This research indicates that the result of the new Vtub-shaped hazard rate function is worth the extra function-complexity for a better relative fit. More application in broader validation of this conclusion is needed using other data sets for reliability modeling in a general industrial setting.

  • PDF

Context-Based Minimum MSE Prediction and Entropy Coding for Lossless Image Coding

  • Musik-Kwon;Kim, Hyo-Joon;Kim, Jeong-Kwon;Kim, Jong-Hyo;Lee, Choong-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.83-88
    • /
    • 1999
  • In this paper, a novel gray-scale lossless image coder combining context-based minimum mean squared error (MMSE) prediction and entropy coding is proposed. To obtain context of prediction, this paper first defines directional difference according to sharpness of edge and gradients of localities of image data. Classification of 4 directional differences forms“geometry context”model which characterizes two-dimensional general image behaviors such as directional edge region, smooth region or texture. Based on this context model, adaptive DPCM prediction coefficients are calculated in MMSE sense and the prediction is performed. The MMSE method on context-by-context basis is more in accord with minimum entropy condition, which is one of the major objectives of the predictive coding. In entropy coding stage, context modeling method also gives useful performance. To reduce the statistical redundancy of the residual image, many contexts are preset to take full advantage of conditional probability in entropy coding and merged into small number of context in efficient way for complexity reduction. The proposed lossless coding scheme slightly outperforms the CALIC, which is the state-of-the-art, in compression ratio.