• Title/Summary/Keyword: square tubes

Search Result 121, Processing Time 0.019 seconds

Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures

  • Chen, Zongping;Liu, Xiang;Zhou, Wenxiang
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.509-523
    • /
    • 2018
  • This paper presents experimental results on the residual bond-slip behavior of high strength concrete-filled square steel tube (HSCFST) after elevated temperatures. Three parameters were considered in this test: (a) temperature (i.e., $20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 HSCFST specimens were designed for push-out test after elevated temperatures. The load-slip curves at the loading end and free end were obtained, in addition, the distribution of steel tube strain and the bond stress along the anchorage length were analyzed. Test results show that the shape of load-slip curves at loading ends and free ends are similar. With the temperature constantly increasing, the bond strength of HSCFST increases first and then decreases; furthermore, the bond strength of HSCFCT proportionally increases with the anchoring length growing. Additionally, the higher the temperature is, the smaller and lower the bond damage develops. The energy dissipation capacity enhances with the concrete strength rasing, while, decreases with the temperature growing. What is more, the strain and stress of steel tubes are exponentially distributed, and decrease from the free end to loading end. According to experimental findings, constitutive formula of the bond slip of HSCFST experienced elevated temperatures is proposed, which fills well with test data.

Bolted connections to tubular columns at ambient and elevated temperatures - A review

  • Leong, S.H.;Sulong, N.H. Ramli;Jameel, Mohammed
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.303-321
    • /
    • 2016
  • Tubular column members have been widely adopted in current construction due to its numerous advantages. However, the closed-section profile characteristics of tubular columns severely limit the connection possibilities. Welding type is acceptable but discouraged because of on-site issues. Blind-bolted connection is preferable because of its simplicity, economic benefit, and easy assembly. This paper presents a state-of-the-art review on bolted connections to tubular columns for bare steel tubes, including square and circular sections. Available studies on bolted connections at ambient and elevated temperatures are reviewed, but emphasis is given on the latter. Various methods of determining the connection performance through experimental, analytical, component based, and finite element approaches are examined. Future research areas are also identified.

Turbulent flow in annuli depending on the position of roughness (거칠기 위치에 따른 이중관 내의 난류유동)

  • An, Su-Hwan;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 1997
  • This paper presents the results of a detailed experimental examination of fully developed asymmetric flows between annular tubes with square-ribbed surface roughness. The main emphasis of the research has been on establishing the turbulence structure, particularly in the central region of the channel where the two dissimilar wall flows interact. Measurements have included profiles of time mean velocities, turbulence intensities, turbulent shear stresses, triple velocity correlations, skewness, and flatness. The region of greatest interaction is characterized by strong diffusional transport of turbulent shear stress and kinetic energy from rough toward the smooth wall region, giving rise to an appreciable separation between the planes of zero shear stresses depending on positions of roughness on the walls.

Automatic Correlation Generation using the Alternating Conditional Expectation Algorithm

  • Kim, Han-Gon;Kim, Byong-Sup;Cho, Sung-Jae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.292-297
    • /
    • 1997
  • An alternating conditional expectation (ACE) algorithm, a kind of non-parametric regression method, is proposed to generate empirical correlations automatically. The ACE algorithm yields an optimal relationship between a dependent variable and multiple independent variables without any preprocessing and initial assumption on the functional forms. This algorithm is applied to a collection of 12,879 CHF data points for forced convective boiling hi vertical tubes to develop a new critical heat flux (CHF) correlation. The meat root mean square, and maximum errors of our new correlation are -0.558%, 12.5%, and 122.6%, respectively. Our CHF correlation represents the entire set of CHF data with an overall accuracy equivalent to or better than that of three existing correlations.

  • PDF

The Study on image correction of geometric distortion in digital radiography image (방사선투과영상의 기하학적 왜곡 보정에 관한 연구)

  • Park, S.K.;Ahn, Y.S.;Gil, D.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.25-30
    • /
    • 2011
  • This study is made to provide with a method for correcting the geometric distortion of the digital radiography image by analytical approach based upon the inverse square law and Beer's law. This study is aimed to find out and improve a mathematic model of nonlinear type. Variations in the alignment of the X-ray source, the object, and imaging plate affect digital radiography images. A model which is expressed in parameter values; e.g, angle, position, absorption coefficient, length, width and pixel account of radiography source, is developed so as to match the sample image. For the best correction of the digital image that is the most similar to the model image, a correction technique based upon tangent is developed; then applied to the digital radiography images of steel tubes. As a result, the image correction is confirmed to be made successfully.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

A Study on the Press Forming by Rectangular Tube of Al6063 Alloys (Al6063 합금 중공각재 튜브에 의한 프레스 성형 연구)

  • Lee, Choung-Kook;Kim, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • In this study, a method for the press forming of rectangular aluminium tube has been proposed. Rectangular aluminium tube has high stiff as the cold steel which can be lighter over 30% weight. It is increased every year by being recycled over 80%. Press die consists of punch, wing-die and holder for aluminium tube bending. When punch is applied with aluminium tube, holder is operated as same punch and wing-die is rotated through hinge. Stress-strain relations and springback are considered by bending angle of aluminium tube. In this study, the behaviors on tubes of square aluminium and rectangular aluminium with different thickness and area are established by the analysis of $DEFORM^{TM}$-3D program. Reducing fuel consumption is expected by using the aluminium tube deformation and it becomes the lightweight through recycling.

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

Condensation Heat Transfer Correlation for Smooth Tubes in Annular Flow Regime

  • Han Dong-Hyouck;Moon C.;Park C.;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1275-1283
    • /
    • 2006
  • Condensation heat transfer coefficients in a 7.92 mm inside diameter copper smooth tube were obtained experimentally for R22, R134a, and R410A. Working conditions were in the range of $30-40^{\circ}C$ condensation temperature, $95-410 kg/m^2s$ mass flux, and 0.15-0.85 vapor quality. The experimental data were compared with the eight existing correlations for an annular flow regime. Based on the heat-momentum analogy, a condensation heat transfer coefficients correlation for the annular flow regime was developed. The Breber et al. flow regime map was used to discern flow pattern and the Muller-Steinhagen & Heck pressure drop correlation was used for the term of the proposed correlation. The proposed correlation provided the best predicted performance compared to the eight existing correlations and its root mean square deviation was less than 8.7%.

Simulation of Hydrogen Transport in a Single-walled Carbon Nanotube for Storage Safety

  • Oh, Kyung-Su;Kim, Dong-Hyun;Park, Seung-Ho;Kim, Jung-Soo
    • International Journal of Safety
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • Carbon nanotubes hold much promise as future materials for safe storage of hydrogen. In this paper, hydrogen transport mechanisms in single-walled carbon nano-tubes (SWNTs) for various temperatures and chiral indices were studied using molecular dynamics simulation method. The SWNT models of zigzag (10,0), chiral (10,5) and armchair (10,10) with hydrogen molecules inside were simulated at temperatures ranging from 253K to 373K. Movements of hydrogen molecules ($H_2$) inside a SWNT were analyzed using mean-square displacements and velocity autocorrelation functions.