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Abstract

An alternating conditional expectation (ACE) algorithm, a kind of non-parametric regression method,
is proposed to generate empirical correlations automatically. The ACE algorithm yields an optimal
relationship between a dependent variable and multiple independent variables without any preprocessing
and initial assumption on the functional forms. This algorithm is applied to a collection of 12,879 CHF
data points for forced convective boiling in vertical tubes to develop a new critical heat flux (CHF)
correlation. The mean, root mean square, and maximum errors of our new correlation are -0.558%,
12.5%, and 122.6%, respectively. Our CHF correlation represents the entire set of CHF data with an
overall accuracy equivalent to or better than that of three existing correlations.

1. Introduction

In general, standard non-linear regression analysis is used to develop an empirical correlation from
experimental data set. Traditionally this analysis should be performed according to following steps; the
initial assumption of functional form, bounding the range of coefficients, and the determination of the
fitting coefficient using statistical tools. When we develop the correlation for bivariate problem
composed of one indenpendent and one dependent variables, this process is fairly simple. Most of the
engineering problems, however, are multi-variate problem composed of one dependent and multi
independent variables. In this case, the determination of initial function form is very difficult and
sophisticated problem. The correlation developer should have a deep physical insight on the phenomena.

From 1970s, statisticians have investigated on the non-parametric regression analysis which does not
require the assumption of initial functional form. The alternating conditional expectation (ACE)
algorithm [1, 2] is the most fruitful result among this kind of researches.

The ACE method is a generalized regression algorithm that yields an optimal relationship between a
dependent vaniable y and multiple independent variables {x,,n=1,---, p}. The objective of the ACE

algorithm is to find optimal transformations &(y) and {¢,(x,), n=1,---, p} which maximize the
statistical correlation between 6(y) and 2 $,(x,) without a priori estimate of the functional forms

&(y) and ¢, (x,). Once the optimal transformations are obtained, simple regression analysis is
performed to determine the functional forms for the transformed dependent and independent variables.
Thus, the ACE algorithm offers considerable advantages over traditional nonlinear regression
techniques, which require an initial selection of the functional forms and often iterative modifications of
the functional relationships as well. In addition, nonlinear regression analysis requires in general
sufficiently accurate estimates of the fitting coefficients to arrive at a converged solution. In contrast,
the ACE algorithm guarantecs the convergence of the transformations, without the need to provide
initial estimates for the transformations, and, once the ACE iteration is converged, simple regression
analysis usually suffices to generate actual analytical functional forms for the transformed variables.
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In this paper, the ACE algorithm is applied to develop critical heat flux (CHF) correlation because
development of CHF correlations is the typical example of non-linear regression analysis. It typically
involves iterative estimates of the functional form of the correlation coupled with multivariate nonlinear
regression analysis. Even with reasonable understanding of the physical phenomena invoived, such
correlation development process is tedious and time-consuming, because the functional form has to be
properly selected before sufficiently accurate correlations may be attained.

2. The ACE Algorithm

The ACE algorithm was formally derived [1] through a functional analysis approach. Instead of
repeating the formal derivation, we begin with a physical justification of the ACE algorithm, which
serves as a heuristic derivation of the basic algorithm. The approach we take is based on a physical
interpretation of the conditional expectation for a set of discrete data points. We use a bivariate
formulation to illustrate the concept and make the necessary extension to multivariate regression
problems.

For a bivariate regression problem with a set of N experimental data points {(x,,y,), i=1---, N},
we wish to find a transformation 6(y) of the dependent variable y and a functional fit ¢(x) such that
the square error in the regression of 6(y,) and ¢(x,)

N
e =500 - 9] )
i=1
is minimized. We assume that the optimal transformations, #(y) and @(x) exist. And we also assume,
without loss of generality, that the optimal transformations, 6(y) and ¢(x), minimizing Eq. (1) are
properly normalized such that E[8(y)] = E[#(x)]=0 and E’[8(3)]=1.

With a judicious selection of the transformation 6(y), the error in Eq. (1) could vanish, in principle,
if 6(y,) equals @(x,J for every point. Inn practice, however, this idealized situation will not materialize
because the experimental data contain random noises and so do 8(y,) and @#(x,). Thus, a smooth
functional representation €(y) cannot be equated exactly to @(x) at every data point. Instead, 6(y,)

is considered, in the ACE algorithm, the expectation of several realizations of ¢(x) for the i” point,
rather than a single unique realization ¢(x,) as in conventional regression analysis. Thus, we interpret
6(y,) as a conditional expectation E [¢(x)| y =¥,] to minimize Eq. (1). In most regression problems, in

practice, there is usually only one value y,, and hence one value ¢(x,), for the i * data point, and the
conditional expectation #(y,) has to be evaluated with- the neighboring values {@(x 1),

J=i-M, i+ M}, for some M. In the simplest approach, O(y,) could be determined as an

arithmetic average of the neighboring data. Tn general, some kind of weighted average over the
neighboring data may be taken as the conditional expectation.
With this smoothing concept, the transformation @(y) at the i” point is obtained as S[g(x)|y = y,]

instead of exact conditional expectation. We may equivalently consider ¢(x,) as the conditional
expectation E[O(y)|x=x ;1 = S[O(y)lx=x ;1. Therefore the optimal transformations, 6(y) and
@(x) , may be defined as

Sy
00 =t ) = SO, @
[seopt |

In practical problem, the smoothing operator, S[q y] can be defined as weighted sum of @ for a given

interval of y. The ACE afgorithm consists of an fterative use of the two smoothing operations of Eq. (2)
in alternating directions.
Based on the bivariate derivation of the ACE algorithm, we can generalize Eq. (2) for a multivariate
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problem, given a set of experimental data {(y,,x,,,---,x ), i=1--,N }:

>V pi

S P
0(y)=—£—"—x"—§)l“= ¢n<xn)=S(0<y)—Z¢&<xl>IYJ ®

I#n

The optimal transformations, & and ¢,,---,¢, cannot be obtained directly because they are coupled to

each other through Eqs. (3). Thus, the ACE algorithm requires the following iterative procedures:

1. Initialization. 6°(y)=y/|y| and ¢ (x,) =--¢,(x,)=0.

2. Inner iteration. Sort 6(y) and {¢,(x,), /=1---,p and /#n} in an ascending order of ¢, (x,)
and evaluate ¢, (x,) for iteration step ¢ using the second equation of Eq. (3). And then iterate until
squared error fails to decrease.

3. Outer iteration. Sort {¢,(x,), n=1,--,p} in an ascending order of 8(y) and calculate 8(y)
using the first equation of Eq. (3). Continue with step 2 until squared error between é(y) and
¢,(x,) fails to decrease.

When convergence is attained, the data in each transformed variable are usually smooth and slowly

varying. Selecting simple functional forms for the transformations, we perform standard regression

analysis for each transformation and finally obtain the functional form of y versus x,,---,x, if 6(y)

has an inverse function:

To illustrate the basic concepts of the ACE algorithm, we borrow a simple example from Ref. 1. In
this bivariate example, we generate 200 simulated data points from the model

y, =exp(sin2mx, +&,/2), i=1,--,200, @)

where x; is sampled uniformly over the interval [0, 1] and the noise &, is drawn independently of X,

from a normal distribution N[0,1]. Subject to noise fluctuations, the plot of y versus x in Fig. 1(a) does

not render a unique or ready estimate for the functional form.

We make a simple application of the ACE algorithm and obtain converged transformations in 7
iterations with a convergence criterion of 10x 10, Based on the plots of the converged data in the
transform domains in Fig. 1(b) and (c), it is logical to assume the functional form

y)=Iny, ¢(x)=sin2m, 5)
which allows us to retrieve the original functional form.

3. The Generation of CHF Correlation using the ACE Algorithm

We now apply the ACE algorithm to a collection of experimental CHF data so that we obtain a new
CHF correlation that is applicable to a broad range of physical parameters. For this purpose, we use the
KAIST CHF data bank [3, 4]. 12,879 CHF data are selected to develop CHF correlation for upward
water flow in vertical round tube.

The ACE algorithm is a modern data regression tool using various statistical estimators such as
mean, standard deviation, and covariance. Thus, it is desirable that input data are statistically well
behaved. Some physical parameters in our problem, however, show undesirable statistical behavior. In
particular, many data points were obtained at some specific pressure, e.g., near the atmospheric
pressure. For this reason, we use non-dimensional parameters instead of physical parameters to arrive at
the CHF correlation as following [3]:

Ah, L Pl q
(xl’xZ’xJ’x:hy)z(l (Gz ) h ’D’l( 'j GChHF] (6)

In Eq. (6), first and third variables are taken logarithmic transformation because their parameter ranges
are much broader than other variables.

We achieved the converged transformations, with a convergence criterion of 10 x 107 both for
inner and outer iterations, after 9 outer iterations and in approximately 600 minutes of CPU time on a
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HP9000/735 machine. We present the transformations, ¢ (x,) versus x, and 6(y) versus y,
obtained through the ACE algorithm in Fig. 2. It is clear from Fig. 2 that the ACE algorithm generates
simple functional forms both for the dependent and independent variables. Using the plots of Fig. 2 and
a standard regression tool, we can obtain simple analytic functions, &(y) and {¢ (x ), n=1,---4}.
For example, 6(y) can be represented as a+blny. For the fitting of other functions, we used
piecewise linear functions.

After individual analytic functions of é(y) and { ¢, (x,), n=1,.-,4} are obtained, we can get the

final form of a new CHF correlation through a simple inversion process and a few manipulations as
followings:

4 L1\ 076 4
%Ps Ah, ) P
Qe = A1A2(G2Lj [0_22 +(h_] J exp(O.lZ(L/D)““)[p—g] Gh,, ,

sz s

(N

where the coefficients, A4, through A4,,in Eq. (7) are given as

op 096377x107 for 2= <471x10™
647x107,568x 107 for szL <445x107 Py
op, i 145012 for 22 <385x 107
(4,,4,)=19.41x107 024 for oS 285x10°"° (4,,4) = 0,
333x1072,014 else 10,00 for P <126x10™
L P
23,04 else

The detail process to get Eq. (7) from the results of ACE algorithm shown in Fig. 2 is given in Ref. [5].
4. Testing of the CHF Correlation

In order to test the accuracy of the new CHF correlation represented by Eq. (7), we have performed
simulation of the CHF data used in our ACE application. We have also compared our ACE-based
correlation with a number of existing CHF correlations.

Our first test consists of simulating the entire set of 12,879 CHF data points. The mean, rms, and
maximum errors are -0.558%, 12.5%, and 122.6%, respectively. There are 86.8% of data points or a
total 11,174 points, and 96.0% of data points or a total of 12,366 points, within +20% and +30% rms
errors, respectively. Furthermore, 99.9% of data points or a total of 12,868 points lic within +80% rms
errors although the maximum prediction error is 122.6%.

To assess the overall accuracy of the correlation represented by Eq. (7), we compare our results with
the Katto, Bowring, and Biasi correlations which are inlet condition type correlations. Table I shows the
prediction errors of the four correlations applied over the whole CHF data points. As shown in the table
Eq. (7) shows the best prediction results with respect to rms error. Biasi correlation shows extremly
large error because many data are beyond its valid parameter ranges. We can not say that Eq. (7) is
better than other correlations because every correlation should be tested within their valid parameter
ranges. However, this table provide a clue that the development of CHF correlation using ACE
algorithm can be applied in real engineering problem successfully.

Table I. The Overall Comparison of CHF Prediction Errors

Correlation Mean Error RMS Error Max. Error
Katto 6.9 18.7 283.4
Biasi 328 - -

Bowring -1.8 14.2 143.8
Eq. (7) -0.6 12.5 122.6
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5. Summary and Conclusions

In this paper, we have proposed the new regression method, ACE algorithm and we modified this
algorithm so that it can be used large engineering problem. And we have used the ACE algorithm to
perform regression analysis of a large set of CHF data and developed a new CHF correlation to verify
the performance of the algorithm. With the CHF data cast in terms of five dimensionless variables, a
simple application of the ACE algorithm automatically yields optimal transformations, &(y) and
¢,(x,), n=1,--- 4. These transformations are obtained without the need to specify initial estimates
for the functional forms or the fitting coefficients whatsoever. The new CHF correlation is compared
with three well-known CHF correlations reveals that the new correlation represents the entire set of
CHF data points with an overall accuracy equivalent to or better than the existing correlations.

The ACE algorithm is a prime example of modern statistical analysis tools which have been made
feasible through the advance of powerful digital computers. With the success we have had in our
realistic application of the ACE algorithm, we recommend further use of the modem regression tool in
complex engineering problems, especially where the underlying physical relationships ar¢ not well
known. This would, for example, be the case in obtaining parametric representations of the mixed or
high-level nuclear waste which is poorly characterized.
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Fig. 1 The results of the ACE algorithm for the example problem
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Fig. 2 The results of the ACE algorithm for CHF data
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