• Title/Summary/Keyword: square steel tube

Search Result 136, Processing Time 0.026 seconds

Seismic Performance of Built-up Concrete Filled Square Composite Column-to beam Connection with Through Diaphragm (관통형 다이아프램을 갖는 조립형 콘크리트 충전 각형 합성기둥-보 접합부의 내진성능)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Concrete filled tubular columns are widely used because the mutual reaction between the concrete and the tube improves strength and ductility of the columns. In an attempt to secure efficient use of members, built-up square columns featuring large width-thickness ratio and the use of thin steel plates are suggested in this study. In order to evaluate the structural characteristics and seismic performance of the column-to-beam connections of the new shape columns, cyclic load test of T-shaped column-to-beam connections was conducted with variables of diaphragms and concrete-filling. Moment-rotational angle relationship, dissipated energy and failure behavior were compared to evaluate stress transfer mechanism of the new shape built-up square column-to-beam connections associated with the variables.

An Experimental Study on Stength of Slender Square Tube Columns Filled with High Strength Concrete (고강도콘크리트충전 각형강관장주의 내력에 관한 실험적 연구)

  • Seo, Seong Yeon;Chung, Jin An
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.471-479
    • /
    • 2002
  • In this paper, 18 square CFT columns filled with high-strength concrete were tested under concentric or eccentric axial loading. Two parameters of the experimental program included the buckling length-section depth ratio ($L_K$/D) and the eccentricity of the appled compressive load (e). In additon, mechanical properties such as the compressive concrete strength and compressive and tensile steel strength were measured and incorporated into the material models for the stress-strain relationships of concrete and steel. This model was used in an elasto-plastic analysis in order to predict the behavior of the slender CFT columns. Observtions of the failure mode during the tests under axial loadig were also presented. The strengths obtained from the analysis. Recommendations for Design, and Constructions of CFT structures were presented, as verified by the experimental results.

Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines

  • Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.347-359
    • /
    • 2020
  • The objective of this study is to experimentally scrutinize the axial performance of built-up concrete filled steel tube (CFT) columns composed of steel plates. In this case, the main parameters cross section types, compressive strength of filled concrete, and the effect of welding lines. Welded built-up steel box columns are fabricated by connecting two pieces of cold-formed U-shaped or four pieces of L-shaped thin steel plates with continuous penetration groove welding line located at mid-depth of stub column section. Furthermore, traditional square steel box sections with no welding lines are investigated for the comparison of axial behavior between the generic and build-up cross sections. Accordingly, 20 stub columns with thickness and height of 2 and 300 mm have been manufactured. As a result, welding lines in built-up specimens act as stiffeners because have higher strength and thickness in comparison to the plates. Subsequently, by increasing the welding lines, the load bearing capacity of stub columns has been increased in comparison to the traditional series. Furthermore, for specimens with the same confinement steel tubes and concrete core, increment of B/t ratio has reduced the ductility and axial strength.

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.

Evaluation of Forming Performance of Cold Rolled Steel Pipes & Tubes for Building Structure (건축구조용 냉간성형 강관의 가공성능 평가)

  • Im, Sung Woo;Choi, Kwang;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.33-42
    • /
    • 2004
  • Making use of SN steel in the building structure should be a prerequisite to adopt the design strength of said steel. As a preceding study, the material properties of STKN400B/490B tubes and SPAP235/325 and SPAR295 square pipes manufactured using SN400B/490B plates were evaluated. Compared with the yield and ultimate strengths of SN400B/490B plates, those of STKN400B/490B tubes increase. Nonetheless, the yield and ultimate strengths of STKN400B/490B tubes satisfied the design codes of STKN400B/490B tubes even though the tubes were fabricated via roll bending or press forming. On the other hand, the yield and ultimate strengths at the edges of SPAP235/325 square pipes did not satisfy the design codes based on the values at the sides. The maximum tensile and compressive residual stresses at the SN490B tube were equal to and 40% of the yield strength of the SN490B plate, respectively, In the case of the SPAP325 square pipe, both the maximum tensile and compressive residual stresses were 80% of the yield strength of the SN490B plate. The axial compressive loaded column test results snowed that the buckling strengths were not very different regardless of the mode of fabrication of STKN490B tunes. i.e., through roll bending or press forming. On the other hand, the buckling strength of the SPAP325 square pipe was higher than that of the built-up square pipe.

Strengthening of concrete structures with buckling braces and buckling restrained braces

  • Mazloom, Moosa;Pourhaji, Pardis;Farash, Abbas Moosa;Sanati, Amir Hossein
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.391-416
    • /
    • 2018
  • The purpose of this article is to strengthen concrete structures using buckling and non-buckling braces. Connection plates are modeled in three shapes including the effect of 1.5t hinge zone length, 2t one and without the zone (1.5t-CP, 2t-CP and WCP). According to the verification performed with ABAQUS software, the connection plates which are superior in ductility and strengthening are found. The results show adding steel braces in concrete moment frames increase the strength and stiffness of the structures up to about 12 and 3 times, respectively. The frame strength increased about 21 and 25 percent with considering the effect of 2t hinge length in connection plates compared to 1.5t-CPs and WCPs. Also the ductility of retrofitted frames with 2t-CP improved 2.06 times more than WCP ones. Thus, 2t-CP sample is the best choice for connecting steel braces to concrete moment frames for retrofitting them. Afterwards, optimum conditions for elemental coating in braces with no buckling are assessed. The length of concrete coatings could be reduced about 30 percent, and buckling did not occur. Therefore, the weight of restraining coating decreased, and its performance improved. It is worth noting that BRBs could be constructed with only steel materials, which have outer steel tubes too. In fact, only the square cross sections of the tube profiles are appropriate for removing the filler concrete, and the rectangular ones are prone to buckle around their weak axis.

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam(2) -The Behaviors Properties of Joint with Key Parameter, such as Strength of Concrete, size of Panel Zone and Axial Force ratio- (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구(2) -콘크리트 강도, 판넬죤의 크기, 축력비를 변수로 한 접합부의 거동 특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.107-120
    • /
    • 1997
  • The purpose of this study is to develop composite structural system which is to have versatility in plan design and to improve economical efficieney, to maximise structural capacity than existing structural system. In this viewpoint, it was investigated to the properties of structural behaviors for i oint consisting of concrete filled steel square tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. In the previous report, researched to the properties of joints with key parameters. such as Axial Force ratio and section types. From the based on previous results, this study investigated the properties of this joints with key parameters, such as strength of concrete, size of panel zone and Axial Force ratio. The obtained results are summarised as follows. (1) Investigating for the failure mode of the beam-to-column joint, the specimens of S,LL and LH series(except for L5H) presented flexural failure mode. (2) The initial stiffness of joint was increasd as the decrease of axial force ratio and increase of the concrete strength. (3) The rotation resisting capacity was effective as the increment of the concrete strength and decrement of the axial force ratio. (4) The emprical formula to predict the ultimate capacity of joint model to introduce decrease coefficient according to the axial force ratio to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

Axial Loading Behaviors of Square Concrete-Filled Tubular Columns with Large Width-to-Thickness Ratio Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) (탄소섬유쉬트(CFRP Sheets)로 보강된 폭두께비가 큰 콘크리트 충전 각형강관 기둥의 중심축하중거동)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • This paper presents the experimental results of behavior of square CFT columns with large the width-ro thickness ratio strengthened with carbon fiber reinforced polymers (CFRP) sheets subjected to concentrated axial loading. The main parameters were b/t ratio and the number of CFRP layers and 6 specimens were fabricated. The values of b/t were ranged from 60 to 100. From the tests, Maximum increase of 16% was also achieved in axial-load capacity with three transverse layered CFRP applied on four sides of steel tubes. The load capacity decreased up to 41% comparing with nominal load capacity of unstrengthened CFT column. However, for CFRP strengthened CFT, the load capacity decreased up to 32%. Finally, from the load-strain relationships, the local buckling occurred before yield point of steel tubes. Also, from the load-strain relationships, it was observed that local buckling were delayed on CFT columns by CFRP sheets retrofitting.

A Study on application of Trapezoidal Steel Box Tunnelling Method (지중압입체를 이용한 지하구조물 축조방법의 적용성 연구)

  • Jun, Sung Bai
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.138-154
    • /
    • 2008
  • The conventional non-dig underground structure building method which made an appearance to reduce the social and environmental costs and maximize the efficiency of the social overhead capital facilities could not help being uneconomical because of many problems such as unnecessary excessive excavation, water leakage, obstacle interference, difficulty of curvilinear application and connection complexity between propelled and injected bodies due to indiscriminate application of small and large circular steel pipes without consideration of the site conditions. The T.S.T.M, in which a protruded square tube is applied as a propulsion and injection body in a design that considered site conditions such as ground condition, depth of soil and live load, was able to be economical as it solved the problems of water resistance, minimization of obstacle interference and curvilinearity, and we can see that it can be applied to all grounds by utilizing or complementing the target ground in terms of engineering. Also in configuring the transverse section, it is possible to not only secure excellent structural safety but also implement all of the above engineering characteristics not only in the square cross section but also in the arch cross section, so it was possible to build structures on any section or ground, and we could confirm the LCC reduction effect and the VE effect.

  • PDF