• Title/Summary/Keyword: square cavity

Search Result 165, Processing Time 0.022 seconds

A Vorticity-Based Method for Incompressible Viscous Flow Analysis (와도를 기저로 한 비압축성 점성유동해석 방법)

  • Suh J. C.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

Unsteady Flow Characteristics of Closed Cavity by Phase Diagram (Phase Diagram에 의한 밀폐캐비티의 비정상 유동특성)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.770-777
    • /
    • 1999
  • In this study a phase diagram has been used to investigate the unsteadiness of two-dimensional lid-driven closed flows within a square cavity for twelve Reynolds numbers; $7.5{\times}10^3,\; 8{\times}10^3,\; 8.5{\times}10^3,\; 9{\times}10^3,\; 9.5{\times}10^3,\; 10^4,\;1.5{\times}10^4,\;2{\times}10^4,\; 3{\times}10^4,\; 7.5{\times}10^4$ and $10^5$. The results indicate that the first critical Reynolds number at which the flow unsteadiness of sinusoidal fluctuation appears from the temporal variation of total kinetic energy curves is assumed of sinusoidal fluctuation appears form the temporal variation of total kinetic energy curves is assumed to be in the neigh-bourhood of $Re=8.5{\times}10^3$ The second critical Reynolds number where the periodic amplitude and frequency collapse to random disturbance being existed around $Re=1.5{\times}10^4$ The exponentially decreasing vortices formed at the lower two corners are found commonly at the time-mean flow pattern of $Re=3{\times}10^4$.

  • PDF

PlV Measurement of Channel Cavity Flow with Bottom Heat surface of Constant Heat Flux (일정 열유속의 하부 가열면을 갖는 채널캐비티 내부유동의 PIV 계측)

  • 조대환;김진구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-442
    • /
    • 1997
  • An experimental study was carried out in a channel cavity with square heat surface by visual¬ization equipment with Mach - Zehnder interferometer and laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two¬frame grey-level cross correlation algorithm. Heat source was uniform heat flux(o.4W/cm$^2$, , O.8W/cm$^2$, 1.2W/cm$^2$). Obtained result showed various flow patterns such as kinetic energy distribution. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach ~ Zehnder are also compared in terms of constant heat flux.

  • PDF

Correlations between anatomical variations of the nasal cavity and ethmoidal sinuses on cone-beam computed tomography scans

  • Shokri, Abbas;Faradmal, Mohammad Javad;Hekmat, Bahareh
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.103-113
    • /
    • 2019
  • Purpose: Anatomical variations of the external nasal wall are highly important, since they play a role in obstruction or drainage of the ostiomeatal complex and ventilation and can consequently elevate the risk of pathological sinus conditions. This study aimed to assess anatomical variations of the nasal cavity and ethmoidal sinuses and their correlations on cone-beam computed tomography (CBCT) scans. Materials and Methods: This cross-sectional study evaluated CBCT scans of 250 patients, including 107 males and 143 females, to determine the prevalence of anatomical variations of the nasal cavity and ethmoidal sinuses. All images were taken using a New Tom 3G scanner. Data were analyzed using the chi-square test, Kruskal-Wallis test, and the Mann-Whitney test. Results: The most common anatomical variations were found to be nasal septal deviation (90.4%), agger nasi air cell (53.6%), superior orbital cell(47.6%), pneumatized nasal septum(40%), and Onodi air cell(37.2%). Correlations were found between nasal septal deviation and the presence of a pneumatized nasal septum, nasal spur, and Haller cell. No significant associations were noted between the age or sex of patients and the presence of anatomical variations (P>0.05). Conclusion: Radiologists and surgeons must pay close attention to the anatomical variations of the sinonasal region in the preoperative assessment to prevent perioperative complications.

Natural Convection Induced by g-jitter in an Enclosure under Null Gravity (무중력 상태하의 밀폐 용기 내에서 g-jitter에 의한 자연 대류)

  • Kim, Ki-Hyun;Hyun, Jae-Min;Kwak, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.522-527
    • /
    • 2001
  • Comprehensive numerical computations are made of side-heated squire cavity which is exposed to zero mean g-jitter. Numerical solutions are acquires to the governing two-dimensional Navier-Stokes equations for a Boussinesq fluid. When the system is exposed to pure sinusoidal g-jitter inclined to the vertical axis, in spite of zero mean gravity there exist non zero net flow fields [8]. The resonance phenomenon are observed in moderate Rayleigh number. And, by comprehensive numerical work, unlike[5], it is found that they are related with the overshoot phenomenon of the sudden gravity up problem.

  • PDF

Analysis of Flow Field in Cavity Using Finite Analytic Method (F.A.M.을 이용한 공동 내부의 유동해석)

  • 박명규;정정환;김동진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.46-53
    • /
    • 1991
  • In the present study, Navier-Stokes equation is numerically solved by use of a Finite analytic method to obtain the 2-dimensional flow field in the square cavity. The basic idea of F.A.M. is the incorporation of local analytic solutions in the numerical solution of linear or non-linear partial differential equations. In the F.A.M., the total problem is subdivided into a number of all elements. The local analytic solution is obtained for the small element in which the governing equation, if non-linear, to be linearized. The local analytic solutions are then expressed in algebraic form and are overlapped to cover the entire region of the problem. The assembly of these local analytic solutions, which still preserve the overall nonlinearity of the governing equations, results in a system of linear algebraic equations. The system of algebraic equations is then solved to provide the numerical solutions of the total problem. The computed flow field shows the same characteristics to physical concept of flow phenomena.

  • PDF

Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations (비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교)

  • Seo,Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

Numerical Study on Convective Heat Transfer in a Compartment Fire - I. Evaluation of Numerical Method and Natural Convection- (실내화재에 있어서의 대류열전달에 관한 수치연구 - I. 수치법 검증과 자연대류-)

  • 박외철;고경찬
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.26-31
    • /
    • 1999
  • In a compartment fire, convective heat transfer dominates spread of the fire and smoke movement before flash-over occurs, and natural convection is very important in particular when there are no openings. The finite volume method with SIMPLE algorithm was applied to a square cavity similar to a compartment without an opening. The objectives of this study are to evaluate the method and to simulate natural convection from a hot body in the cavity. The results without the hot body showed an excellent agreement with those of previous studies. Streamlines, isotherms and Nusselt numbers were computed for different Rayleigh numbers.

  • PDF

Double-Diffusive Convection in a Rectangular Cavity Responding to Time-Periodic Sidewall Heating (주기적인 측벽가열에 반응하는 사각공동내의 이중확산 대류)

  • Kwak H. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.112-117
    • /
    • 2001
  • A numerical investigation is made of unsteady double-diffusive convection of a Boussinesq fluid in a rectangular cavity subject to time-periodic thermal excitations. The fluid is initially stratified between the top endwall of low solute concentration and the bottom endwall of high solute concentration. A time-dependent heat flux varying in a square wave fashion, is applied on one sidewall to induce buoyant convection. The influences of the imposed periodicity on double-diffusive convection are scrutinized. A special concern is on the occurrence of resonance that the fluctuations of flow and attendant heat and mass transfers are mostly amplified at certain eigenmodes of the fluid system. Numerical solutions are analyzed to illustrate the characteristic features of resonant convection.

  • PDF

A Study on Effect of Domain-Decomposition Method on Parallel Efficiency in 2-D Flow Computations (2차원 유동장 해석에서 영역분할법에 따른 병렬효율성 검토)

  • Lee Sangyeul;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.147-152
    • /
    • 1998
  • 2-D flow fields are studied by using a shared memory parallel computer with a parallel flow analysis program which uses domain decomposition method and MPI library for data exchange at overlapped interface. Especially, effects of directional domain decomposition on parallel efficiency are studied for 2-D Lid-Driven cavity flow and flow through square cavity. It is known from the present study that domain decomposition along the main flow direction gives better parallel efficiency in 1-D partitioning than along the other direction. 2-D partitioning, however, is less sensitive to flow directions and gives good parallel efficiency for most of the cases considered.

  • PDF