• Title/Summary/Keyword: spurious

Search Result 527, Processing Time 0.029 seconds

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조물-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

Study on the Effect of Metal-Wall Loading on the DC Power-Bus

  • Kahng Sungtek
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.193-196
    • /
    • 2005
  • The DC power-bus for the PCB is loaded with metal walls on its selected sides and is characterized electromagnetically. This is a novel concept of approach to mitigate the spurious resonance and finally signal integrity problems. In particular, the peak at DC, which is always in the way to secure parallel-plates' EMC, can be completely removed by the proposed method. Through the findings of this study, the effect of metal-loading of the power-bus will be presented along with the impression that the suggested technique can tackle the headaches of signal integrity, ground bounce, EMIs.

TRANSFORMATION OF LOCAL BIFURCATIONS UNDER COLLOCATION METHODS

  • Foster, Andrew;Khumalo, Melusi
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1101-1123
    • /
    • 2011
  • Numerical schemes are routinely used to predict the behavior of continuous dynamical systems. All such schemes transform flows into maps, which can possess dynamical behavior deviating from their continuous counterparts. Here the common bifurcations of scalar dynamical systems are transformed under a class of algorithms known as linearized one-point collocation methods. Through the use of normal forms, we prove that each such bifurcation in an originating flow gives rise to an exactly corresponding one in its discretization. The conditions for spurious period doubling behavior under this class of algorithm are derived. We discuss the global behavioral consequences of a singular set induced by the discretizing methods, including loss of monotonicity of solutions, intermittency, and distortion of attractor basins.

New Anisoparametric 3-Node Elements for Out-of-Plane Deformable Curved Beam

  • Kim, Moon-Joon;Min, Oak-Key;Kim, Yong-Woo;Moon, Won-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.272-282
    • /
    • 2000
  • Based on numerical reduced minimization theory, new anisoparametric 3-node elements for out-of-plane curved beam are developed. The elements are designed to be free from spurious constraints. In this paper, the effect of the Jacobian upon numerical solution is analyzed and predicted through reduced minimization analysis of anisoparametric 3-node elements with different Jacobian assumption. The prediction is verified by numerical tests for circular and spiral out-of-plane deformable curved beam models. This paper proposes two kinds of 3-node elements with 7-DOF; one element employs 2-point integration for all strains, and the other element uses 3-point integration with a constant Jacobian within element for calculation of shear strain.

  • PDF

Novel Phase Noise Reduction Method for CPW-Based Microwave Oscillator Circuit Utilizing a Compact Planar Helical Resonator

  • Hwang, Cheol-Gyu;Myung, Noh-Hoon
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.529-532
    • /
    • 2006
  • This letter describes a compact printed helical resonator and its application to a microwave oscillator circuit implemented in coplanar waveguide (CPW) technology. The high quality (Q)-factor and spurious-free characteristic of the resonator contribute to the phase noise reduction and the harmonic suppression of the resulting oscillator circuit, respectively. The designed resonator showed a loaded Q-factor of 180 in a chip area of only 40% of the corresponding miniaturized hairpin resonator without any spurious resonances. The fully planar oscillator incorporated with this resonator showed an additional phase noise reduction of 10.5 dB at a 1 MHz offset and a second harmonic suppression enhancement of 6 dB when compared to those of a conventional CPW oscillator without the planar helical resonator structure.

  • PDF

An efficient finite element modeling of dynamic crack propagation using a moving node element

  • Kwon, Y.W.;Christy, C.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.173-184
    • /
    • 1994
  • The objective of this study was to develop a simple and efficient numerical modeling technique for dynamic crack propagation using the finite element method. The study focused on the analysis of a rapidly propagation crack in an elastic body. As already known, discrete crack tip advance with the stationary node procedure results in spurious oscillation in the calculated energy terms. To reduce the spurious oscillation, a simple and efficient moving node procedure is proposed. The procedure does require neither remeshing the discretization nor distorting the original mesh. Two different central difference schemes are also evaluated and compared for dynamic crack propagation problem.

Extension of Field-Consistency to Plane Strain Elements (일관장 개념의 평면변형률 요소에의 확장)

  • 김용우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1799-1809
    • /
    • 1995
  • The applicability of the field-consistency paradigm, which was originally employed for analysis of locking due to constrained energy having the second power of a strain, is extended to the constrained energy having a quadratic form of strain. For the extension, nearly-incompressible plane strain problem is considered by introducing the concept of reduced minimization. The field-consistent analysis of the plane strain problem leads to a clear and systematic understanding on the relation amongst constraints imposed on element, spurious constraint -free optimal points, and integration order used.

Improvement of Finite Element for Mindlin Plate Bending (Mindlin 평판 유한요소의 개선)

  • 김선훈;최창근
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.83-90
    • /
    • 1988
  • The present work is concerned with the improvement of finite element for the analysis of plate bending structures. The element formulation is based upon Mindlin plate concept. The displacement field of this element is formed by adding nonconforming modes to two rotational displacement components of a 'heterosis plate element. The element has the requisite numbers of zero eigenvalues associated with rigid body modes to avoid the spurious zero energy mode. It is shown that the results obtained by the element converged to the exact solutions very rapidly as the mesh is refined and exhibited reliable solutions through numerical studies for standard benchmark problems. This element is shown to overcome the shear locking problem completely in very thin plate situation even for irregular meshes.

  • PDF

Development of a SHA with 100 MS/s for High-Speed ADC Circuits (고속 ADC 회로를 위한 100 MS/s의 샘플링의 SHA 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.295-301
    • /
    • 2012
  • In this article, we have designed SHA, which has 12 Bit resolution at an input signal range of 1 $V_{pp}$ and operates at a sampling speed of 100 MS/s in order to use at front of high speed ADC. SFDR(Spurious Free Dynamic Range) of the proposed system drops to approximately 66.3 dB resolution when the input frequency is 5 MHz, and the sampling frequency is 100 MHz, however, the circuit without a feedthrough has 12 bit resolution with approximately 73 dB.

Analysis of 3D Microwave Oven Using Finite Element Method (전자렌지 캐비티의 전자파 해석)

  • Park, Kweong-Soo;Kim, Gweon-Jib;Shon, Jong-Chull;Kim, Sang-Gweon;Park, Yoon-Ser
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1753-1755
    • /
    • 1996
  • This paper presents an analysis of the 3D microwave oven considering its forming. The results were compared with experimental data. Finite Element Method(FEM) using edge clement is employed for the analysis. For solving the large sparse system matrix equation was solved using the parallelized QMR method. Analysis of the 3d cavity has troublesome difficulties such as spurious solutions, too many memory and long computation time. We overcome this difficulties by using edge clement for spurious solutions and the parallelized QMR method by the aid of Paralle Virtual Machine(PVM) for the memory and computation time.

  • PDF