Browse > Article
http://dx.doi.org/10.4134/JKMS.2011.48.6.1101

TRANSFORMATION OF LOCAL BIFURCATIONS UNDER COLLOCATION METHODS  

Foster, Andrew (Department of Mathematics and Statistics Memorial University of Newfoundland)
Khumalo, Melusi (Department of Mathematics University of Johannesburg)
Publication Information
Journal of the Korean Mathematical Society / v.48, no.6, 2011 , pp. 1101-1123 More about this Journal
Abstract
Numerical schemes are routinely used to predict the behavior of continuous dynamical systems. All such schemes transform flows into maps, which can possess dynamical behavior deviating from their continuous counterparts. Here the common bifurcations of scalar dynamical systems are transformed under a class of algorithms known as linearized one-point collocation methods. Through the use of normal forms, we prove that each such bifurcation in an originating flow gives rise to an exactly corresponding one in its discretization. The conditions for spurious period doubling behavior under this class of algorithm are derived. We discuss the global behavioral consequences of a singular set induced by the discretizing methods, including loss of monotonicity of solutions, intermittency, and distortion of attractor basins.
Keywords
collocation methods; spurious behavior; bifurcation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dy-namical systems, Comm. Math. Phys. 74 (1980), no. 2, 189-197.   DOI
2 O. Stein, Bifurcations of hyperbolic fixed points for explicit Runge-Kutta methods, IMA J. Numer. Anal. 17 (1997), no. 2, 151-175.   DOI   ScienceOn
3 A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cam-bridge University Press, Cambridge, 1996.
4 H. C. Yee and P. K. Sweby, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations II, RNR Technical Report RNR-92-008, 1992.
5 H. C. Yee and P. K. Sweby, Global asymptotic behavior of iterative implicit schemes, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 (1994), no. 6, 1579-1611.   DOI   ScienceOn
6 H. C. Yee and P. K. Sweby, Dynamics of numerics and spurious behaviors in CFD computations, RIACS Technical Report 97.06, 1997.
7 H. C. Yee, P. K. Sweby, and D. F. Griffiths, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics, J. Comput. Phys. 97 (1991), no. 2, 249-310.   DOI   ScienceOn
8 E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Non-stiff Problems, Springer, New York, 2000.
9 D. J. Higham, A. R. Humphries, and R. J.Wain, Phase space error control for dynamical systems, SIAM J. Sci. Comput. 21 (2000), no. 6, 2275-2294.   DOI   ScienceOn
10 Y. Huang and X. Zou, Dynamics in numerics: on two different finite difference schemes for ODEs, J. Comput. Appl. Math. 181 (2004), no. 2, 388-403.
11 A. R. Humphries, Spurious solutions of numerical methods for initial value problems, IMA J. Numer. Anal. 13 (1993), no. 2, 263-290.   DOI   ScienceOn
12 A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Numer. Anal. 10 (1990), no. 1, 1-30.   DOI
13 H. Lamba, Dynamical systems and adaptive timestepping in ODE solvers, BIT 40 (2000), no. 2, 314-335.   DOI
14 A. Iserles, T. Peplov, and A. M. Stuart, A unified approach to spurious solutions intro- duced by time discretisation. I. Basic theory, SIAM J. Numer. Anal. 28 (1991), no. 6, 1723-1751.   DOI   ScienceOn
15 N. Joshi, Singularity analysis and integrability for discrete dynamical systems, J. Math. Anal. Appl. 184 (1994), no. 3, 573-584.   DOI   ScienceOn
16 Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 2004.
17 H. Lamba and A. Stuart, Convergence results for the MATLAB ODE23 routine, BIT 38 (1998), no. 4, 751-780.   DOI
18 J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Ltd., Chichester, 1991.
19 F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordi-nary differential equations, SIAM J. Numer. Anal. 4 (1967), 433-445.   DOI   ScienceOn
20 V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983.
21 M. A. Aves, D. F. Griffiths, and D. J. Higham, Does error control suppress spuriosity?, SIAM J. Numer. Anal. 34 (1997), no. 2, 756-778.   DOI   ScienceOn
22 R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Westview Press, Boul-der, CO, 2003.
23 B. M. Garay and K. Lee, Attractors under discretizations with variable stepsize, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 827-841.   DOI
24 D. F. Griffiths, P. K. Sweby, and H. C. Yee, On spurious asymptotic numerical solutions of explicit Runge-Kutta methods, IMA J. Numer. Anal. 12 (1992), no. 3, 319-338.   DOI
25 J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bi-furcations of Vector Fields, Springer, New York, 1983.
26 A. Guillou and J. L. Soule, La resolution numerique des problemes differentiels aux conditions initiales par des methodes de collocation, Rev. Francaise Informat. Recherche Operationnelle 3 (1969), Ser. R-3, 17-44.
27 E. Hairer, A. Iserles, and J. M. Sanz-Serna, Equilibria of Runge-Kutta methods, Numer. Math. 58 (1990), no. 3, 243-254.   DOI