• Title/Summary/Keyword: spur gear

Search Result 190, Processing Time 0.02 seconds

Experiments and Prediction of Pitting Life in Spur Gears (스퍼기어의 피팅 수명 예측 및 실험)

  • Kim, Jong-Sung;Ju, Jin-Wook;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.399-403
    • /
    • 2009
  • The objective of this paper is to predict pitting initiation by using a contact analysis and subsurface stress. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions. Subsurface stress field is obtained using rectangular patch solutions. It is used Mesoscopic multiaxial fatigue criterion to predict contact fatigue life. It is important to predict pitting initiation to enhance reliability of the mechanical elements. Pitting life prediction in the spur gears which are fundamental mechanical element is presented in this paper.

Dynamic Contact Analysis of Spur Gears (평기어의 동접촉 해석)

  • Lee, Ki-Su;Jang, Tae-Sa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

Effects of Heat-treatment on the Bending Fatigue Strength of SNC 815 Carburized Spur Gear (SNC 815 침탄치차의 굽힘피로강돈에 미치는 열처리법의 영향)

  • Lyu, Sung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.12-19
    • /
    • 1994
  • This paper deals with the bending fatigue strength of SNC815 carburized spur gears. The test gears are heat-treated by two different treatments. One is the direct quenching after car-burization. The other is treated by reheating and quenching. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. The fatigue strength of direct quenched gears is higher than that of reheated quenched gears. The fatigue strength is estimated from the hardness and the residual stress by using the experimental formula proposed by Tobe and Inoue. The estimated strength is close to the test results, and the validty of the formular is confirmed.

  • PDF

A Study on the Automated Design System for Gear (기어설계 자동화 시스템에 관한 연구)

  • Jo, Hae-Yong;Nam, Gi-Jeong;O, Byeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1506-1511
    • /
    • 2002
  • A computer aided expert system fur spur, helical, bevel and worm gears was newly developed by using AutoiCAD system and its AutoLISP computer language in the present study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, nm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.

A Study on the Design of a Gear Transmission Error Test Rig (기어 전달오차 측정 장비의 설계에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Yan, Hou-Ling;Zhu, Qing-Wang;Xu, Zhe-zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.14-19
    • /
    • 2016
  • Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. TE is usually expressed as an angular deviation, or a linear deviation measured at the pitch point and calculated at successive positions of the pinion as it goes through the meshing cycle. Accurate measurement of TE for gear transmission will provide a reasonable basis for gear design, manufacturing processes and quality control. Therefore, in order to study the accuracy of the gear transmission, stability, TE, vibration and noise after gear micro-geometry modification, a gear transmission test rig is proposed in this paper, which is based on the existing technical conditions, by using reasonable testing methods, hardware and a signal processing method. All of the details and the experience can be taken into consideration in the next upgraded test rig.

Structural Analysis of Pump Gear of Urea-SCR System for Diesel Engine (디젤기관용 Urea-SCR 시스템 펌프 기어에 관한 구조해석)

  • Lee, Hongyoon;Park, Chungyeol;Kim, Hyungmin;Kim, Sejin;Choi, Dooseuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2016
  • This research was conducted structural analysis in order to analyze the impact of the gear in Urea pump when the water is frozen. Subject of study, gear was designed nine models, this gear is a spur gear, located in pump. Contact conditions and rotation conditions were set the gear's condition of restriction. Given 136 MPa pressure to external gear by water was set to the applied stress. The performing result of structural analysis, maximum stress and strain are appeared between two gears. At the same diameter, strain and stress are decreased gradually thicker. Because of the little part in crevice between gears, this parts of gears could be obtained conclusion to be generated maximum stress and strain.

Development of the CAMSsystem for CNC Hob Relieving Lathe (CNC 호브 릴리빙 선반의 CAM 시스템 개발)

  • 양희구;김석일;박천홍;류근수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.150-157
    • /
    • 1996
  • The hob is considered as an effective gear cutting tool for achieving the various gears such as spur gear, helical gear, worm gear and so on. To enhance the productivity and precision of hobs and the competitive ability of domestic CNC hob relieving lathes, a CAM system for CNC hob relieving lathe needs to be realized. In this study, the CAM system is developed based on the personal computer and C language. Besides the automatic generation of CNC data, the developed CAM system has the various capabilities related to the generation of tool path, the cutting simulation for verifying the generated CNC data and forecasting the cutting time, the DNC operation for communicating the CNC data with CNC controller by RS232C port, and the estimation of undercut length for verifying the hob cutting conditions.

  • PDF

Prediction of Deformation and Load in Gear Forging (기어단조시 변형과 하중의 예측)

  • 박종진;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.156-164
    • /
    • 1996
  • As high capacity and precision forging presses have become available, it is possible to manufacture gears by forging technology. In gear manufacturing by forging, however, there are problems of designs of ides and preforms. In the present paper, two exampels are presented to show how the rigid plastic finite element method can be utilized to overcome the problems. The examples are spur gear forging and interanl-apline gear forging. Both analyses are three dimensional using eight node linear block elements with approximation that the involute curve can be represented by lines and arcs. Results of the analyses include metal flow in dies and required load during forging which aid to decide proper designs.

  • PDF

Development of the High Power Turbo Blower Gear (터보블로워용 증속기어 개발)

  • Jeon, Eon-Chan;Lee, Woo-Hyun;Lee, Kwon-Hee;Park, Young-Chul;Sung, Jang-Hyun;Kim, Young-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.32-37
    • /
    • 2011
  • This study developed Gear Automatic Design Program that users with the basic knowledge about mechanical engineering can easily model spur gears and helical gears. The Gear Automatic Design Program used Visual LISP which is an user program based on Auto CAD and made it model the gears with involute tooth by the exact mathematic definition. Also, to verify these, the reliability was secured by comparing it with a gear generated in commercial software. And we will develop nitrocarburising process and solve problems which had been caused of SCM440's dimensional changing.

A Study on the Flexural and Torsional Vibration of Two Stage Gear System (2단 치차장치의 굽힘과 비틀림 진동에 관한 연구)

  • 정태형;최정락;이정상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.99-104
    • /
    • 1999
  • In this paper, dynamic behavior of a two stage gear train system is analyzed. This system consists of three shafts supported by ball bearing at the ends of them and two pairs of spur gear sets. For exact analysis, the meshing tooth pair of gears is modeled as spring having time-dependent meshing stiffness and damping. The result of this analysis is compared to that of analysis using other model of spring having mean mesh stiffness. The effect of the excitation force by the imbalance of a rotor of a motor on the vibration of a gear train system is also analyzed. Finally, the change of a natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF