• 제목/요약/키워드: spray-layer-by-layer process

검색결과 138건 처리시간 0.023초

Fabrication of Low Carbon Steel Coated with 18%Cr-2.5%Ni-Fe Powder by Laser Cladding and Its Application on Plastic Injection Mold for Aluminum Diecasting

  • Kim, Cheol-Woo;Yoo, Hyo-Sang;Cho, Kyun-Taek;Jeon, Jae-Yeol;Choi, Se-Weon;Kim, Young-Chan
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.601-607
    • /
    • 2021
  • Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes - thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가 (Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites)

  • 채연화;문흥수;김세영;우상국;박지연;이기성
    • Composites Research
    • /
    • 제30권2호
    • /
    • pp.84-93
    • /
    • 2017
  • 본 논문에서는 탄화규소 섬유강화 탄화규소 복합재료에 내환경 코팅을 수행한 후, 열 기계적 특성평가에 대한 연구를 수행하였다. 초기분말은 성형공정도중 흐름성을 좋게 하기 위해 분무건조법으로 구형의 분말을 제조하였다. 내환경 코팅재는 복합재료가 산화되거나 고온 수증기와 반응하는 것을 방지하기 위해 행하여 지는데, 본 연구에서는 액상침투법(LSI)으로 제조한 복합재에 실리콘으로 본드코팅을 하고 그 위에 대기플라즈마용사법으로 뮬라이트(mullite)와 무게비로 12% 이터븀 실리케이트(ytterbium silicate)가 혼합된 복합재를 코팅하였다. 대기플라즈마 코팅공정 시 성형변수로서 분무거리를 100, 120 그리고 140 mm로 변화시켰다. 그 후 $1100^{\circ}C$의 온도에서 100시간동안 유지하는 실험과 $1200^{\circ}C$의 온도에서 열충격을 가하는 싸이클을 3000회 반복하였다. 열내구성 시험동안 계면 박리는 일어나지 않았지만, 현저한 균열들이 코팅층 내에서 발견되었다. 균열밀도와 균열의 길이는 코팅도중의 분무거리에 의존하여 변화하였다. 열 내구성 시험 후, 압흔 시험을 통해 기계적 열화거동을 분석하였는데, 시험의 방식이나 조건들이 하중-변위 곡선의 거동에 영향을 주었다.

공기 압력과 전기장이 접목된 액적 분무에 관한 연구 (Atomization of Liquid Via a Combined System of Air Pressure and Electric Field)

  • 황상연;성백훈;변도영
    • 한국가시화정보학회지
    • /
    • 제12권2호
    • /
    • pp.9-12
    • /
    • 2014
  • Conventional electrospray and air spray methods have the vulnerabilities of limited flow rate (throughput) and droplet size, respectively. Since high throughput with uniform size of droplet is required for various applications, an improved technique should be adopted. Here, we report a combined system of an air pressure and an electric field and evaluate the atomization performance of it. The air flow allowed applying high flow rate range and the electric field reinforced the atomization process to generate fine droplets. A correlation between two forces was investigated by comparing the droplet produced by each method. The atomized droplets were measured and visualized by image processing and a particle image velocimetry (PIV). The quantitative results were achieved from the parametric space and the effect of both forces was analyzed. The motion of charged droplets followed the outer electric field rather than the complex vortex in the shear layer so that the droplets accelerated directly toward the grounded collector.

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.

청연군주묘(淸衍郡主墓) 출토복식(出土服飾) 중 직김(織金), 부김의(附金衣)의 보존처리 (Conservation Treatment of Jikgeum(Weave with Supplementary Golden Wefts) and Bugeum(Gold sticking) Textiles and Costumes Excavated from Tomb of Cheongyeongunju (a Princess))

  • 박승원;이윤경;유혜선
    • 박물관보존과학
    • /
    • 제9권
    • /
    • pp.67-83
    • /
    • 2008
  • 국립중앙박물관이 소장하고 있는 청연군주 출토복식(신수751 의류 일괄) 중 織金 및 金箔이 있는 복식의 보존 처리 과정을 소개하고자 한다. 금사 및 금박의 비파괴분석(X-선형광분석:XRF)을 실시한 다음 표면의 금(Au)이 열화가 진행되면서 분상화된 금층에 아교 2%용액을 도포하여 접착력을 강화하였다. 표면의 먼지와 오염물제거를 위해 진공흡입을 통한 건식세척과 분사식 습식세척을 병행하였고 손상부분을 보수하여 유물의 원형을 회복하였다.

Sursulf 처리후 고주파 표면경화된 저탄소강의 경도 및 마모특성에 미치는 Sursulf 처리시간 및 고주파 경화 이송속도의 영향 (The Effect of Sursulf Treating Time and Traveling Speed during Induction Hardening on Hardness and Wear Characteristics of Low Carbon Steel Combined-Heat-Treated)

  • 노용식;김영희;이평호;신호강;이상윤
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.17-26
    • /
    • 1989
  • This study has been performed to investigate into some effects of the Sursulf treatment time and the traveling speed of surface hardening treatment on the hardness and the wear characteristics by applying the combined heat treating techniques of Sursulf process followed by induction hardening treatment to mild steel. It has been shown that increasing the Sursulf treatment time increases the case depth, but both hardness and wear resistance are not considerably improved. When the combined heat treating technique of high frequency induction heating after Sursulf treatment is applied, an improvement in case depth as well as wear resistance is obtained. In particular, the hardness in diffusion zone is greatly increased due mainly to the formation of martensite and possibly lower bainite. Iron oxides formed during induction heating and subsequent water spray cooling in the outermost part of compound layer may be considered to cause some increases in hardness and wear resistance.

  • PDF

저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구 (A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating)

  • 권성희;박동용;이대열;어광준;이기안
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

표면플라즈몬공명 가시화 장치를 이용한 증발하는 이종혼합물 액적의 실시간 농도 가시화 기법 개발 (Development of the Real-time Concentration Measurement Method for Evaporating Binary Mixture Droplet using Surface Plasmon Resonance Imaging)

  • 정찬호;이형주;최창경;이형순;이성혁
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.212-218
    • /
    • 2021
  • The present study aims to develop the Surface Plasmon Resonance (SPR) imaging system facilitating the real-time measurement of the concentration of evaporating binary mixture droplet (BMD). We introduce the theoretical background of the SPR imaging technique and its methodology for concentration measurement. The SPR imaging system established in the present study consists of a LED light source, a polarizer, a lens, and a band pass filter for the collimated light of a 589 nm wavelength, and a CCD camera. Based on the Fresnel multiple-layer reflection theory, SPR imaging can capture the change of refractive index of evaporating BMD. For example, the present study exhibits the visualization process of ethylene glycol (EG)-water (W) BMD and measures real-time concentration change. Since the water component is more volatile than the ethylene glycol component, the refractive index of EG-W BMD varies with its mixture composition during BMD evaporation. We successfully measured the ethylene glycol concentration within the evaporating BMD by using SPR imaging.

Si 변성 유/무기 하이브리드 코팅액에 의한 아연도금강판의 내식특성 (Corrosion Resistance of Galvanized Steel by Treating Modified Si Organic/Inorganic Hybrid Coating Solution)

  • 서현수;문희준;김정량;김종순;안석환;문창권;남기우
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.32-38
    • /
    • 2011
  • Galvanized steel has gone through a chemical process to keep it from corroding. The steel gets coated in layers of zinc because rust will not attack this protective metal. For countless outdoor, marine, or industrial applications, galvanized steel is an essential fabrication component. The reduction of the corrosion rate of zinc is an important topic. In the past, a very popular way to reduce the corrosion rate of zinc was to use chemical conversion layers based on $Cr^{+6}$. However, a significant problem that has arisen is that the use of chromium salts is now restricted because of environmental protection legislation. Therefore, it is very important to develop new zinc surface treatments that are environmentally friendly to improve the corrosion resistance of zinc and adhesion with a final organic protective layer. In this study, a Urethane solution (only Urethane 20 wt.%; S-700) and an organic/inorganic solution with Si (Si polysilicate 10 wt.% + Urethane 10 wt.%; LRO-317) are used. Based on the salt spray test of 72 h, S-700 and LRO-317 had a superior effect for the corrosion resistance on EGI and HDGI, respectively.