• Title/Summary/Keyword: split tensile test

Search Result 90, Processing Time 0.027 seconds

Properties of concrete incorporating sand and cement with waste marble powder

  • Ashish, Deepankar K.;Verma, Surender K.;Kumar, Ravi;Sharma, Nitisha
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.145-160
    • /
    • 2016
  • Marble is a metamorphic rock used widely in construction which increases amount of marble powder obtained from it. Marble powder is a waste product obtained from marble during its processing. Marble waste is high in calcium oxide content which is cementing property but it creates many environmental hazards too if left in environment or in water. In this research, partial replacement of cement and sand by waste marble powder (WMP) has been investigated. Seven concrete mixtures were prepared for this investigation by partially replacing cement, sand with WMP at proportions of 0%, 10% and 15% by weight separately and in combined form. To determine compressive strength, flexural strength and split tensile strength of concrete made with waste marble powder, the samples at the curing ages of 7, 28 and 90 days was recorded. Different tests of durability were applied on samples like ultrasonic pulse wave test, absorption and sorptivity. For further investigation all the results were compared and noticed that WMP has shown good results and enhancing mechanical properties of concrete mix on partially replacing with sand and cement in set proportions. Moreover, it will solve the problem of environmental health hazard.

Thermal Characteristics of Concrete Fabricated with Blast Furnace Slag Subjected to Thermal Cycling Condition (고로슬래그 혼입 콘크리트의 고온 조건에서의 열역학 성능)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.414-420
    • /
    • 2017
  • The thermal characteristics of concrete fabricated with blast furnace slag were investigated in this paper. Test parameters included water-binder ratio and the content of furnace slag. Experimental program were performed to measure mechanical properties including compressive strength and split tensile strength under high-temperature thermal cycling, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with blast furnace slag was greater than that of mixture without blast furnace slag. In addition, thermal conductivity of mixtures with blast furnace slag was greater than that of mixtures without blast furnace slag. It indicates that blast furnace slag was favorable for charging and discharging in thermal energy storage system. Test results of this study would be used to design concrete module system of thermal energy storage.

Experimental Investigation on Relationship of Winding Process Variables and Mechanical Properties for Filament Wound Composites (필라멘트와인딩 복합재의 기계적 특성과 와인딩시 공정변수와의 관계에 대한 실험적 고찰)

  • 윤성호;김준영;황태경
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.56-65
    • /
    • 1999
  • The relationship of the winding process variables and the mechanical properties of filament wound composites is investigated experimentally. The winding process variables considered are the fiber tensions and the fiber ends. The filament wound ring specimens are fabricated using 3-axis controlled filament winding machine. Two types of carbon fibers, TZ-507 and IZ-40, are used as reinforcements and epoxy for filament winding is used as resin. During the winding process, the fiber tensions are varied from 0.5kgf to 3.0kgf, and the number of the fiber ends are varied from 1 to 6. The fiber volume fractions and the void contents for the ring specimens are measured through the resin digestion. The mechanical properties of the ring specimens are also evaluated by the split disk test. The test results show that the winding process variables affect the fiber volume fractions and the void contents of the ring specimens, which result in the variation of the tensile properties of the ring specimens. Therefore, suitable winding process variables should be applied to maximize the structural performance and the productivity for filament wound structures.

  • PDF

Pull-out behaviour of recycled aggregate based self compacting concrete

  • Siempu, Rakesh;Pancharathi, Rathish Kumar
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • The use of recycled aggregate in concrete is gaining much attention due to the growing need for sustainability in construction. In the present study, Self Compacting Concrete (SCC) is made using both natural and recycled aggregate (crushed recycled concrete aggregate from building demolished waste) and performance of recycled aggregate based SCC for the bond behaviour of reinforcement is evaluated. The major factors that influence the bond like concrete compressive strength (Mix-A, B and C), diameter of bar ($D_b=10$, 12 and 16 mm) and embedment length of bar ($L_d=2.5Db$, $5D_b$ and full depth of specimen) are the parameters considered in the present study in addition to type of aggregates (natural and recycled aggregates). The mix proportions of Natural Aggregate SCC (NASCC) are arrived based on the specifications of IS 10262. The mix proportions also satisfy the guidelines of EFNARC. In case of Recycled Aggregate SCC (RASCC), both the natural coarse and fine aggregates are replaced 100% by volume with that of recycled aggregates. These mixes are also evaluated for fresh properties as per EFNARC. The hardened properties like compressive strength, split tensile strength and flexural strength are also determined. The pull-out test is conducted as per the specifications of IS 2770 (Part-1) for determining the bond strength of reinforcement. Bond stress versus slip curves were plotted and a typical comparison of RASCC is made with NASCC. The fracture energy i.e., area under the bond stress slip curve is determined. With the use of recycled aggregates, reduction in maximum bond stress is noticed whereas, the normalised maximum bond stress is higher in case of recycled aggregates. Based on the experimental results, regression analysis is conducted and an equation is proposed to predict the maximum bond stress of RASCC. The equation is in good agreement with the experimental results. The available models in the literature are made use to predict the maximum bond stress and compare the present results.

Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete (순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향)

  • Yang, In-Hwan;Jeong, Joon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Most studies on mechanical properties of concrete with recycled aggregate was focused on the concrete with compressive strength of less than 40 MPa. Therefore, this paper concerns the compressive strength and mechanical properties of concrete with compressive strength of greater than 40 MPa containing recycled coarse aggregate (RCA). The experimental parameters were compressive strength level and replacement ratio of RCA. Compressive strength level was 45 and 60 MPa, and replacement ratio of RCA was 30, 50, 70 and 100%. The results of the test were discussed: compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. The design code predictions for elastic modulus overestimated the experimental results. However, the design code predictions for modulus of rupture were generally in agreement with the measured values.

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete (콘크리트의 강도 및 내구성에 대한 고로슬래그미분말 분말도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1095-1104
    • /
    • 2014
  • This paper presents the results of experimental work on both strength characteristics and durability of concrete or mortar having 50% ground granulate blastfurnace slag(GBS) with different fineness levels (4,450, 6,000 and $8,000cm^2/g$). Compressive and split tensile strength test results indicated that the concrete with a higher fineness level of GBS exhibited a better strength development due to the acceleration of latent hydraulic property at the later curing stage compared with ordinary portland cement concrete. Meanwhile, it was found that a higher fineness level of GBS showed some negative effects on the resistance against freezing-thawing action. However, incorporation of GBS to concrete, irrespective of fineness levels, significantly enhanced the chloride ions penetration resistance. The resistance against sulfate attack of mortar with GBS was greatly dependent on the attacking sources from sulfate environments.

Effect of Cementitious Composite on the Thermal and Mechanical Properties of Fiber-Reinforced Mortars for Thermal Energy Storage (열에너지 저장을 위한 시멘트 복합재료의 섬유보강 모르타르의 열역학 특성에 관한 영향)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced mortars for thermal energy storage were investigated in this paper. The effect of the combination of different cementitious composite on the thermal and mechanical characteristics of fiber-reinforced mortars was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. The results showed that the residual compressive strength of mixtures with OPC and graphite was greatest among the mixtures. Thermal conductivity of mixtures with alumina cement was greater than that of mixtures with OPC, indicating favor of alumina cement for charging and discharging in thermal energy storage system. The addition of zirconium into alumina cement increased specific heat of mixtures. Test results of this study could be used to provide information of material properties for thermal energy storage concrete.

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.