• Title/Summary/Keyword: spline functions

Search Result 138, Processing Time 0.033 seconds

APPROXIMATION BY FUZZY B-SPLINE SERIES

  • BLAGA PETRU;BEDE BARNABAS
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.157-169
    • /
    • 2006
  • We study properties concerning approximation of fuzzy-number-valued functions by fuzzy B-spline series. Error bounds in approximation by fuzzy B-spine series are obtained in terms of the modulus of continuity. Particularly simple error bounds are obtained for fuzzy splines of Schoenberg type. We compare fuzzy B-spline series with existing fuzzy concepts of splines.

EIGENVALUE ANALYSIS USING PIECEWISE CUBIC B-SPLINE (CUBIC B-SPLINE을 이용한 고유치 해석)

  • Kim Young-Moon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.355-360
    • /
    • 2000
  • This paper presents properties of piecewise cubic B-spline function and Rayleigh-Ritz method to compute the smallest eigenvales. In order to compute the smallest eigenvalues, Rayleigh quotient approach is used and four different types of finite element approximating functions corresponding to the statical deflection curve, spanned by the linearly independent set of piecewise cubic B-spline functions with equally spaced 5 knots from a partion of [0, 1], each satisfying homogeneous boundary conditions with constraining effects are used to compute the smallest eigenvalues for a Sturm-Lionville boundary equations of u"+ λ²u=0, u(0.0)=u(0.0)=0, 0≤x≤1.0.

  • PDF

Level Set based Shape Optimization using Extended B-spline Bases (확장 B-spline 기저 함수를 이용한 레벨셋 기반의 형상 최적 설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.391-396
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady state heat conduction problems. The only inside of complicated domain is identified by the level set functions and taken into account in computation. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. The nucleation of holes is possible whenever and wherever necessary during the optimization using a topological derivative concept.

  • PDF

A non-symmetric non-periodic B3-spline finite strip method

  • Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.247-262
    • /
    • 2004
  • In the earlier application of the spline finite strip method(FSM), the uniform B3-spline functions were used in the longitudinal direction while the conventional interpolation functions were used in the transverse direction to construct the displacement filed in a strip. To overcome the shortcoming of the uniform B3-spline, non-periodic B-spline was developed as the displacement function. The use of non-periodic B3-spline function requires no tangential vectors at both ends to interpolate the geometry of shell and the Kronecker delta property is also satisfied at the end boundaries. Recently, non-periodic spline FSM which was modified to have a multiple knots at the boundary was developed for the shell analysis and applied to the analysis of bridges. In the formulation of a non-symmetric spline finite strip method, the concepts of non-periodic B3-spline and a stress-resultant finite strip with drilling degrees of freedom for a shell are used. The introduction of non-symmetrically spaced knots in the longitudinal direction allows the selective local refinement to improve the accuracy of solution at the connections or at the location of concentrated load. A number of numerical tests were performed to prove the accuracy and efficiency of the present study.

Fuzzy System Representation of the Spline Interpolation for differentiable functions

  • Moon, Byung-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.358-363
    • /
    • 1998
  • An algorithm for representing the cubic spline interpolation of differentiable functions by a fuzzy system is presented in this paper. The cubic B-spline functions which form a basis for the interpolation function are used as the fuzzy sets for input fuzzification. The ordinal number of the coefficient cKL in the list of the coefficient cij's as sorted in increasing order, is taken to be the output fuzzy set number in the (k, l) th entry of the fuzzy rule table. Spike functions are used for the output fuzzy sets, with cij's as support boundaries after they are sorted. An algorithm to compute the support boundaries explicitly without solving the matrix equation involved is included, along with a few properties of the fuzzy rule matrix for the designed fuzzy system.

  • PDF

A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form. (B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬)

  • 김덕수;류중현;이현찬;신하용;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval

  • Xiang, Jiawei;He, Zhengjia;He, Yumin;Chen, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.613-629
    • /
    • 2007
  • A finite element method (FEM) of B-spline wavelet on the interval (BSWI) is used in this paper to solve the static and vibration problems of thin plate. Instead of traditional polynomial interpolation, the scaling functions of two-dimensional tensor product BSWI are employed to construct the transverse displacements field. The method combines the accuracy of B-spline functions approximation and various basis functions for structural analysis. Some numerical examples are studied to demonstrate the proposed method and the numerical results presented are in good agreement with the solutions of other methods.

THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION

  • Hahm, Nahmwoo;Hong, Bum Il
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.729-738
    • /
    • 2013
  • In this paper, we investigate a localized approximation of a continuously differentiable function by neural networks. To do this, we first approximate a continuously differentiable function by B-spline functions and then approximate B-spline functions by neural networks. Our proofs are constructive and we give numerical results to support our theory.

A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING

  • Jin, Bo-Ram;Lee, Yong-Hae
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.321-332
    • /
    • 2010
  • In this paper, we experiment image warping and morphing. In image warping, we use radial basis functions : Thin Plate Spline, Multi-quadratic and Gaussian. Then we obtain the fact that Thin Plate Spline interpolation of the displacement with reverse mapping is the efficient means of image warping. Reflecting the result of image warping, we generate two examples of image morphing.

Spline function solution for the ultimate strength of member structures

  • Zhang, Qi-Lin;Shen, Zu-Yan
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.185-196
    • /
    • 1994
  • In this paper a spline function solution for the ultimate strength of steel members and member structures is derived based on total Lagrangian formulation. The displacements of members along longitudinal and transverse directions are interpolated by one-order B spline functions and three-order hybrid spline functions respectively. Equilibrium equations are established according to the principle of virtual work. All initial imperfections of members and effects of loading, unloading and reloading of material are taken into account. The influence of the instability of members on structural behavior can be included in analyses. Numerical examples show that the method of this paper can satisfactorily analyze the elasto-plastic large deflection problems of planar steel member and member structures.