The Third AFSS(1998). 358 363

Fuzzy System Representation of the Spline Interpolation
for Differentiable functions

Byung Soo Moon
Korea Atomic Energy Research Institute
P.O. Box105, Taeduk Science Town, Taejon, Korea 305-600
Tel:+82-42-868-2980, Fox:+82-4/2-868-8916
E-mail:bsmoon@nanum.kaeri.re.kr

Abstract

An algorithm for representing the cubic spline interpolation of differentiable functions by a fuzzy

system is presented in this paper. The cubic B-spline functions which form a basis for the interpolation

function are used as the fuzzy sets for input fuzzification. The ordinal number of the coefficient ey in

the list of the coefficient c;;’s as sorted in increasing order, is taken to be the output fuzzy set number

in the (k,I)th entry of the fuzzy rule table. Spike functions are used for the output fuzzy sets, with ci;'s

as support boudaries after they are sorted. An algorithm to compute the support boundaries explicitly

without solving the matrix equation involved is included, along with a few properties of the fuzzy rule

matrix for the designed fuzzy system.
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1. Introduction

It is well known that fuzzy systems can be used
to approximate continuous functions on a compact
set within arbitrary accuracy. Castro and Delgado[1]
show that for a continuous function f(z) on a
compact set and an € > 0, there exists a fuzzy system
that approximates f(z) within e. L. Wang[2] also
shows this by proving that a set of fuzzy systems,
each of which being identified as a function of fixed
form with different parameter values, is dense in
the set of all continuous functions. P. Wang et
al[3] provides a constructive method for building a
fuzzy system to approximate a function within a
prescribed accuracy, while Kosko[4] proposes a fuzzy
system with two levels one of which being used to
approximate and tune the fuzzy rules,

Some of the above papers suggest constructive
methods on how to set up fuzzy systems to repre-
sent continuous functions, while others provide only
theoretical proofs. When the desired accuracy is in

the range of ¢ < 0.001, however, they are not
practical due to the huge number of rules one
must use. Noting that for the same accuracy,
the cubic spline interpolation requires much less
number of points compared to the lagrangian
type interpolations used in the above papers,
we try the cubic spline interpolation to design a
fuzzy system for differentiable functions.

In the following, we consider differentiable
functions f(x,y) defined on a region contain-
ing the the interval [—1,1] x [~1,1]. We divide
the interval [-1, 1] into 2n subintervals and let
z; = =1+ jh, y; = —1+ jh with h = i— If Bi(t)’s
are cubic B-spline functions defined on [¢t;.9, f;,9]
so that Bi(t;) = §, Bi(ti1) = By(ti1) = L for
i=-1,0,1,...,2n-+1, then the spline interpolation
function for f(x,y) can be written as

2n+1

S(z,y) = Z ci;Bi(x) B;(y)

4,j=-1

(1)
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with ¢;;’s obtained from solving a set of linear

equations fcr the interpolation constraints’5|.

2. A Fuzzy System to Repre-

sent Spline Interpolation

In this section, we describe how to set up a
fuzzy system for representing the cubic spline

interpolation for a differentiable function f(z,y).

(1) Fuzzy Sets for Input Fuzzification

Let x; == —~1+1ih, y; = —1+ jh with h = L and
define cubic B-spline functions B;(z) and B;(y) as
We take these functions B;(x)
and B;(y) for ¢ = —=1,0,1,...,2n + 1 as fuzzy sets
If t is
an arbitrary point in [—1,1], then ¢t € [z4_y,xy)
for some 1 < k < 2n + 2. When t is fuzzified
by {Bi(z)lt = -1,0,1,...,2n + 1}, we obtain
A = By(t) satisfying Zfﬁﬂ X; = 1 which follows
from Z?ﬁf} B;(z) = 1 for all z. Note that A\; =0
for i < k—2or for i > k+2 and hence t has nonzero
membership in B;(z) only when k —2 <i < k+ 1,

so that we have Zf:qu A= 1.

described above.

for input variables x and y respectively.

(2) Generation of Fuzzy Rules

First, we sort the (2n + 3)? coefficients ¢;; in (1)
in increasing order and delete the duplicate ones,
i.e., delete ¢z for example when |ci; — cn| < 1077,
Next, we assign ordinal number 1 to the smallest
¢;; and 2 to the second smallest, and so forth. The
largest ¢;; will have ordinal nurnber N which is less
than or equal to (2n + 3)2. We then form a rule
matrix R so that (4, j)th entry R;; is the ordinal
number(fuzzy set number) corresponding to the
coefficient ¢;;. For the fuzzy inferences, we use the
Larsen’s product rule so that if z belongs to B;(z)
with membership value A; and y belongs to B;(y)
with p;, then (x,y) belongs to the set R;; with
membership value A;p;.

(3) Output Fuzzy Sets

Let {tx |k = 1,2,..., N} be the sorted array of
¢;;s. For each k, define an output fuzzy set Ty to
be triangular set{spike function) whose support is
For
the first fuzzy set, we use an arbitrary interval

{tk—1, tp+1] with maximum value of 1 at .

tto. t2] with t; < &, and similarly for the last set,
an interval [ty_1,t,1] with ty41 >ty is used. The
ordinal numbers in the rule table represent these
output fuzzy sets, i.e. the fuzzy set number j in
the rule table described above represents the fuzzy
set Ty, for j = 1,2,...,N.

(4) Defuzzification

We use the center area defuzzification method
for defuzzification of the output. When the out-
put from the fuzzy inferences are fuzzy sets Ty;)'s
with weights 1;)’s for j = 1,2,...,16, the defuzzi-
fication will compute

Yt it &
16 = 2 Uitk (2)
2 =1 Vr(y) ;

where ;) is the center of support for the fuzzy
set Ty5. Note that the denominator Z}il Uiy Is
of the form (E§=_2 )\i0+,-)(2;:_2 Hjo+;) Which is 1
since both factors are 1.

The following theorem proves that the fuzzy
system described above is an exact representation
of the cubic spline interpolation for arbitrary
differentiable functions.

Theorem 1. Let f(z,y) be a differentiable func-
2n+1

tion of z and y and let S(z,y) = Z ci; Bi(x)B;(y)
ijel
be the spline interpolation of f(r,y) at

{(zyy))] -1 < 4,5 < 2n+1}. If F is the
fuzzy system designed as above using the coeffi-
cients c;;'s, then the output F(z,y) of the fuzzy
system at (z,y) € [~1,1] x [-1,1] is identical to
the value of the spline interpolation function (1),
ie. F(z,y) = S(z,y).
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Proof.
(~1,1]x[~1,1], then & € [zx_1,zx) and y € [y1—1,y1)
for some 1 < k1 < 2n+ 2. If A\; = By(z) for
-1 < 4,j < 2n + 1, then from Z?ZjB,(t) =1

for all t € {—1,1], we have Z?ﬁﬂ A = 1. Recall

that \; =0 wheni <k —2ori > k + 2, and hence

we have Y"1 A; = 1. Therefore, when z is fuzzi-

Let (x,y) be an arbitrary point in

fied, we obtain fuzzy sets numbered k — 2, k-1, k,
k + 1 each with membership values Ar_o, Ar_1, Ax,
Me+1, whose sum is 1.

Similarly, when y is fuzzified, we have fuzzy sets
1—2,1-1,1, 1+ 1, whose membership values be-
ing g1 o, pi-1, pt, piy1- When the fuzzy rules are
applied, we obtain 16 output fuzzy sets (%, j), for
i=k—-2,k—-1,kk+landj=10-2,1-1,11+1
with membership values A;p;.

Finally, the center area defuzzification produces
Zf?il_l AiltiCi

i 2n+1
2 S which becomes 37717 Aipjey;
Zi,jzfl 1”;

since the sum in the denominator is 1.

Now, note that this value is the same as
2n+1

S(xo,y0) = >ijeyciiBi(xo)B;(w) and hence

the theorem is proved. Q.E.D.

3. Computation of Support

Boundaries

In this section, we describe an explicit method
to compute the support boundaries of the output
fuzzy sets. As mentioned in the previous section,
the output fuzzy sets are defined to be the spike
functions with support boundaries consisting of cu-
bic spline interpolation coefficients. We have shown
in our earlier work[6] that the interpolation coef-
ficients for P(z) = 2™ can be computed directly
without solving the matrix equation involved. Let

Ao = 1, Ay = ~1, and define A;’s successively by

k-1

1
Agk =1- -5 ZO:QICCQ,')\QZ', (3)

k-1

1
Aol = —1 — 3 ;2k+102i+1)‘2i+1-

with & = 1,2,.... Using these A;’s and the degree

(4)

of the polynomial m, we define

m
ami = Y _mC"™ "N (5)
1=0
for j = —n, —n+1,...,n+2, then it is shown in our

earlier work[6] that the spline interpolation function
can be written as

2n+1 )
S@) = > (T L )Bi(@). (6)
=—1

where ¢; = 0 for all i when m < 4.

To compute €; to be used when m > 4, we
first let ay = 0.5, and define o successively
by agy1 = 1/(4 — ar), for k = 1,2,... Let

Pr+2 = 1/(1 — anany1), and define pp successively

, T

by pr = —akpPri1 = (_1)n/kakak+1---an+lan+2,
for k = n+ 1,n,...,1. We also define r,,; —
1/(1 — an1an), 1e = —oiTri1, bk =nyn—1,...,2,
and r = -—%7‘2. Then the following theorem

provides a method to compute the cubic spline
interpolation function without solving the matrix

equation involved.

Theorem 2{6]. Let m be an even positive integer
and let P(z) = x™. If ¢m ;’s and p;’s are as defined
above, Qm; = f=i and p = £ — Immitfen then the

(2n + 3) spline interpolation coefficients for P(x)

are (Qm n + PPni2; Qm ni1 + PPrsls-- s Qmo +
Pp2, Qm1 + pp1, Qm2 + pp2, -+, Qmns2 + PPni2)-
In case m is an odd integer, the coeflicients
are (Qm-n — ity @m nt1 — Pras..o, Qo —
Pris Qmi, Qma + pri, -, Qmnia + prosa)-

Next, we consider P(z,y) = Pi{x) x P2(y) where
Pi(z) = z*, Py(y) = y'. The spline interpolation
function for P(x,y) becomes

2n+1 2n+1
S(x,y) = Y eiBi(x) x Y_ d;B;(y)
i=—1 j=-1
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2n+1 2n+1

=3 ed Bi@)Biy)

R o |

(7)

where ¢;’s and d;'s are computed by the algorithm
described in Theorem 1. When the above method
is used to compute the interpolation coefficients
for some of the simple polynomials, we obtain the

following resulis.

Example 1. The spline interpolation coeffi-
cients for P(x) = x™ with m = 1,2,3 and 4.
When ¢, ;’s are computed using Theorem 1,

we obtain q1; = j—1, q; = (- 1)? - %’
ga; = JG -G —2), g = 2 -1)?-3,
. P-5t B - R+ 3 g =
7 — 6% + 10j* — 1052 + 4j + 3. Hence the
spline interpolation coefficients are cg-l) = i%l,
= (g &Y = AELEZ
e = (DA - 2

Example 2. The spline interpolation coefficients
for P(z,y) =z x y and Q(z,y) = z* + %

When the results of Example 1 are substituted
into relation (7), we obtain Lottt forwl — (1 4
1)(~1+ Z) for P(z,y). Similarly, the coefficients
for Q(z,y) = x*+y? are (—1+ £)?+(-1+ %)2 — 5.

4. Some Properties of the

Fuzzy Rule Table

In this section, we describe some properties of
the fuzzy rule table or equivalently of the rule

matrix.

Theoremna 3. Let f(z,y) and g(z,y) be differ-
entiable functions and let Zf?:l_l ci; Bi(z)Bi(y),
32l

interpolation functions.

d;; Bi(x)B;{y) be the corresponding spline
If { (i(n),j(n)) | n =
1,2,...,N} are the indices of ¢;;’s when they are
sorted in an increasing order with duplicate ones
deleted and if { (k(n),I(n)) | n = 1,2,...,N}
are the corresponding indices for di’s, then the

rule table for P(x,y) is identical to that of Q(z,y)
if and only if k(n) = i(n), I(n) = j(n), for all
n=12,...,N.

Proof. Recall that the (7, j)th entry of the rule
matrix R;; is defined to be the ordinal number
of ¢;; or dj; respectively for f(x,y) and g(z,v).
Hence, all the corresponding ordinal numbers are

the same if and only if the two rule matrices are
the same. Q.E.D.

Corollary 1. If f(z,y) = cg(zx,y) + d with
¢ > 0, then the rule table for f(z,y) is the same
as the table for g(z,y). The only difference in
the fuzzy system representations of f(z,y) and
g(z,y) in this case is in the output fuzzy sets, whose
support boundaries are scaled by ¢ and shifted by d.

Theorem 4. If two differentiable functions
f(z,y) and g(x,y) have the same fuzzy rule table,
then the rule table for the sum f(z,y) + g(z,y)
will be the same as that for f{z,y).

Proof. Let ¢;;, dij, —1 < 4,7 < 2n+ 1 be the
interpolation coefficients for f(xz,y) and g(z,y)
respectively. Then we have ¢;; < ¢y if and only
if dij < du since the rule tables are the same.
Therefore, ¢;;+d;; < ey +dy if and only if ¢;; < cp,
i.e. the rule table for f(z,y) + g(z,y) is the same
as that for f(z,y). Q.E.D.

Theorem 5. Let Py(z,y) =
P(z,y) = « + my with a positive integer m, then
the (7,j)th entry of the fuzzy rule table R;; is
equal to (i — 1) + mo(j — 1) + 1, where my is the
minimum of m and 2n + 3. The center of support

r + y and

for the output fuzzy set corresponding to R;; is at
—1.2(m+ 1)+ (i — 1+ m{j — 1)h

A routine proof of the above is omitted.

Corollary 2. The fuzzy rule table for polynomi-
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als Pi(z,y) = 2+ (2n + 3)y and Py(z,y) =z + ky
are the same, when k > 2n + 3.

Example 3. When n = 5, the two polynomials
P(z,y) = x + 13y and Q(x,y) = = + 14y have the
same fuzzy rule table and so does R(z,y) = 2¢+27y
since R(z,y) = P(z,y) + Q(z,y).

Theorem 6. Let P(z,y) = x + ay and let 2n be
the number of subintervals of the interval [—1,1].
Then the (i,j)th entry of the fuzzy rule table
for P(z,y) is given by R;; = (i — 1)(2n + 3) + j,
,j = -1,0,...,2n + 1 for all a satisfying
I<ax< g}g

Proof. Let ¢, 4,7 = -1,0,1,...,2n + 1
be the spline coefficients for P(z,y) = = + ay.
Note that it is equivalent to prove that the fuzzy
set numbers in the rule table increase as the
columm number increases in a row and as the
row number increases from 1 to 2n + 3 , i.e.
Ci; < €Cijr1 and ¢ionp1 < cip—1 for all ¢ and
j. Recall that ¢ _piit1 = —n + 4 and hence
i = (-1+ &) +a(-1+1) = —(1+a)+ 122
From this, it is trivial to verify c¢i; < ¢ij41

since @« > 0. The second inequality follows from
1—(2n+2)x
n

Citl,—1 — Ci2ntl = which is positive since

a< 2711? by assumption. Q.E.D.

5. Examples

In this section, we describe two examples of the
fuzzy system designed to represent the cubic spline
interpolation of a polynomial in z and y. Eval-
uation results of the fuzzy system are compared
with those of a fuzzy system using spike functions
for the input fuzzification. We evaluated the fuzzy
systems at 10,000 points and computed the average

and the maximum of the absolute errors.

Example 4. Fuzzy system for P(z,y) = %

When the procedure described in the previous
section is applied to P(z,y) = z* x y* with n=2, we
obtain 7 x 7 fuzzy rules in Table 1, with the centers
of support for the 17 output fuzzy sets at -11.8750,
-2.96875, -1.56250, -.390625, -.125000, -.062500,
-.031250, -.015625, 0., .015625, .031250, .062500,
125000, .390625, 1.56250, 2.96875, 11.8750.

Table 2 shows a summary of the evaluation
errors at 10,000 points, including those by a fuzzy
system using spike functions for n=2, n=5, n=10.
The sizes of the rule tables are 7 x 7, 13 x 13, and
23 x 23 for the spline interpolations, and 5 x 5,
11 x 11, 21 x 21 respectively for the case when

spike funcions are used.

As can be seen from Table 2, both the maximum
absolute errors and the averages of the absolute
errors for the spline cases reduce by 0(7—1;), while
the reduction rate is only of O(;};) for the spike
function cases.

Table 1. Fuzzy Rules for P(x,y) = =%y’

Y

1 2 3 4 5 6 7

111 2 9 9 9 16 17
213 4 9 9 9 14 15
3113 11 9 9 9 7 5

z 4|6 8 9 9 9 10 12
5113 11 9 9 9 7 5
6|13 4 9 9 9 14 15
711 2 9 9 9 16 17

Table 2. Comparison of Evaluation Errors
{Spline vs Spike)

Maximum Error Average Error

n Spline Spike Spline Spike

2 {0.003790 0.219168 | 0.000521 0.037837
5 | 0.000095 0.056989 | 0.000013 0.005399
10 | 0.000006 0.017504 | 0.000001 0.001287

Example 5. Fuzzy system for P(z,y) = x%y +

.’L‘y2

When the procedure described in the previous
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section is applied to P(z,y) = 2%y + zy? with n=2,
we obtain 7 x 7 fuzzy rules in Table 3, with the
centers of support for the 25 output fuzzy sets at
-6.50000, -3.54166, -1.83333, -1.33333, -.833333,
-.791666, -.625000, -.291666, -.166666, -.125000,
-.033333, -.041666, -.000000, .041666, .033333,
(125000, .166666, .291666, 625000, . .791666,
.833333, 1.33333, 1.83333, 3.54166, 6.50000

Table 4 shows a summary of the evaluation
errors at 10,000 points, including those by a fuzzy
system using spike functions for n=2, n=5, n=10.
Note that both the maximum absolute errors and
the averages of the absolute errors for the spline
This is due to the fact

that the spline interpolation function is essentially

cases are less than 1077,

a polynomial of degree 3 and so is the function
P(z,y).

Table 3. Fuzzy Rules for P(z,y) = z%y + zy?

Y
1 2 3 4 5 6 7

111 2 4 16 21 20 13
212 3 7 15 18 13 6
3(4 7 9 14 13 8 5

r 4{16 15 14 13 12 11 10
5121 18 13 12 17 19 22
6120 13 &8 11 19 23 24
7113 6 5 10 22 24 25

Table 4. Comparison of Evaluation Errors
(Spline vs Spike)

Average Error

Maximum Error l

subintervals are used for [—1, 1] with interpolation
error of order O(%). This accuracy comes from the
spline interpolation since our system is a represen-
tation of the cubic spline interpolation. When spike
functions are used, the maximum number of rules is
(2n+1)? for the interpolation error of O(%). Even
though our system is only a representation of the
spline interpolation function, the fuzzy system rep-
resentation is better in the sense that it provides
more insights on how the coefficients are related to
the properties of the functions.
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6. Conclusion

The fuzzy system we designed can represent dif-
ferentiable functions very accurately. As seen in Ex-

ample 4, at most (2n+ 3)? rules are needed when 2n
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